
Procedural Representation of CIC Proof Terms

Ferruccio Guidi⋆

Department of Computer Science
Mura Anteo Zamboni 7, 40127 Bologna, ITALY.

fguidi@cs.unibo.it

Abstract. In this paper we propose an effective procedure for translat-
ing a proof term of the Calculus of Inductive Constructions (CIC), which
is very similar to a program written in a prototypal functional program-
ming language, into a tactical expression of the high-level specification
language of a CIC-based proof assistant like coq [1] or matita [2]. As a
use case, we report on our implementation of this procedure in matita

and on the translation of 668 proofs generated by coq 7.3.1 [3]1, from
their logical representation as CIC proof terms to their high-level repre-
sentation as tactical expressions of matita’s user interface language.

1 Introduction

Proof assistants are increasingly used to build large-scale digital libraries of
formalised mathematical knowledge. In principle, these libraries should allow
users to benefit from a large set of basic units of knowledge (i.e. definitions,
axioms, proofs, etc.) upon which to build up their own developments. However in
practice, users often face difficulties in adapting existing formalisations to their
needs and start their developments nearly from scratch, leading to duplicate
work and unintegrated contributions.

The major difficulties are due to the fact that different proof assistants are
very likely to use different knowledge representation formats both at the logical
level and at the user interface level.

At the logical level the mathematical notions are expressed in a framework
which usually is a type theory or a set theory, while at the user interface level
these notions are expressed by a set of instructions (commands or tactics) that
drive the proof assistant in the generation of the logical level contents. In some
cases these instructions form a programming language.

⋆ Partially supported by the Strategic Project DAMA (Dimostrazione Assistita per la
Matematica e l’Apprendimento) of the University of Bologna.

1 These proofs belong to a formal development of the author on λ-typed λ-calculus
[4] that was finished when coq 7.3.1 was outdated. Any user-level porting of the
development to a newer version of coq up to 8.1 failed or was unsatisfactory, so the
author did not submit his proofs to coq’s library and, being a member of the matita

development group, decided to migrate to matita implementing the procedure pre-
sented in this paper. We stress that the porting was done at the user level because
the work in [4] is still evolving and the proofs need to be maintained accordingly.

Sharing knowledge among different proof assistants at the logical level is usu-
ally less difficult since the relationships between various logical frameworks are
known and some techniques that facilitate knowledge reuse have been provided
[5]. But in actual fact this is not always satisfactory because proof assistants
allow to edit an existing piece of knowledge only starting from its user interface
representation, so the adaptation and maintenance of this knowledge can not be
performed at the logical level. Therefore sharing knowledge at the user inter-
face level appears more desirable although much more difficult because in most
cases the instructions used at this level do not have a formal semantics and their
effects heavily depend on the execution context and on implementation details.

Nevertheless there is a good chance that a proof assistant can translate a
knowledge item from its own logical level to its own user level by using its
own interface instructions. So we propose to approach the problem of sharing
knowledge at the user interface level by reducing it to the problem of sharing its
counterpart at the logical level while leaving to each proof assistant the task of
translating this knowledge from one level to the other.

Transforming a knowledge item from the user interface level to the logical
level yields no problems apart from the possible loss of the information about
the item that is not captured by its logical representation. In that event the
logical representation of the item can be annotated [6].

In this paper we consider the opposite transformation in the case of the proof
assistants coq [1] and matita [2] when the knowledge item to be translated is
a proof. This amounts to compiling a proof term of the Calculus of Inductive
Constructions (CIC) [7] in a tactical expression of the user interface language
used by these systems. In Section 2 we will overview CIC proof terms and we
will discuss the tactical expressions we want to use in the transformation. The
transformation itself will be presented in Section 3 and a use case will be outlined
in Section 4. Section 5 contains our concluding remarks.

2 CIC Proof Terms and Tactical Expressions

In this section we introduce the domain and the codomain of our transformation,
i.e. the CIC proof terms and tactical expressions we will use, while providing
some related definitions and results.

Throughout the paper we assume the “Barendregt’s convention” [8], i.e. the
names of the bound variables and of the free variables are disjoint. Also notice
that we will use the symbol ≡ for definitional equality.

2.1 CIC Proof Terms and Related Definitions

CIC [7] is a powerful typed λ-calculus that, through the “propositions as types
and proofs as terms” (PAT) interpretation [8] (i.e. the Curry-Howard isomor-
phism), serves as logical framework for some proof assistants like coq and
matita. In the following we recall some concepts about CIC just to set the

notation we will use in the paper (therefore this description of CIC is not meant
to be complete). In particular the letters t, u, v, w will denote terms.

Here are some constructions that appear only in the CIC terms used as types:

Definition 1 (some type constructions).

1. (type of a proposition according to the PAT interpretation) Prop;
2. (type of a local declaration of x of type v in t) Πx:v.t.

The terms of CIC representing proofs are those whose type is of type Prop

and they are built using the following constructions:

Definition 2 (proof terms).

1. (reference to a global declaration or definition) c;
this includes a reference to a constructor of an (co)inductive type;

2. (reference to a local declaration or definition) x;
3. (local declaration of x of type w in t) λx:w.t;
4. (local definition of x as v in t) x←v.t;
5. (application of the function t to the arguments v1 · · · vn) (t v1 · · · vn);

when n = 0 it is convenient to set (t) ≡ t;
6. (explicit cast of the type of t to w) (t : w);
7. (type casted case analysis on v) (v ⇒ t1 · · · tn : w);

v inhabits a (co)inductive type [7] with constructors c1 · · · cn and ti is the
branch taken when v is an instance of ci. Here the term w is the type of the
whole expression.

Local definition by (co)recursion [7] is also available in the calculus but we
do not consider it at the moment since it is rarely found inside proofs.

From now on t[w1 · · ·wn/v1 · · · vn] denotes the sequential replacement of
v1 · · · vn with w1 · · ·wn in t, Γ ⊢ t1 ↔ t2 denotes the CIC conversion judge-
ment (i.e. t1 and t2 are convertible according to the reduction rules of CIC
under the premises in Γ , that can be local declarations or definitions of the form
x:u and x←v respectively), and Γ ⊢ t : u denotes the CIC type judgement (i.e.
the type of t is u according to the type rules of CIC under the premises in Γ).
Notice that we are not using CIC terms with meta-variables (i.e. placeholders).

2.2 Contents and structure of proofs

In general terms a proof has two main aspects: its contents, i.e. what is proved
step by step, and its structure, i.e. how the proof is developed step by step.
Evidently a representation of a proof focused on its structure is less readable
for the human user, but appears to be easier to maintain. In fact adapting or
maintaining a proof usually amounts to changing some aspects of its contents
while trying to preserve its structure. Moreover in the perspective of identifying
the common proof patterns occurring in a set of proofs, which can be useful in
the design of automated proof procedures, we observe that such patterns are

more likely to concern the structure of these proofs rather than their contents.
So we expect that a structure-oriented or procedural representation of the proofs
would make these patterns more evident. On the contrary if focus our attention
on proof readability at the user interface level, a contents-oriented or declarative
representation of the proof is more desirable and effective especially if natural
language rendering is exploited [9–11].

The distinction between the declarative aspect and the procedural aspect of
a proof is captured at the logical level by the distinction between the parts of
the proof term, i.e. the subterms, that denote types and the parts that do not.

2.3 Primitive Tactical Expressions

We recall that in general terms tactical expressions are a way of representing
proofs at the user interface level. They are evaluated by the system in the context
of a conjecture, i.e. the statement to prove (the conclusion) under a list of
premises (local declarations and definitions) and the effect of the evaluation,
i.e. the result of the expression, is the (virtual or real) construction of a proof
for the conjecture. We also recall that the atomic tactical expressions are termed
tactics and represent atomic proof steps at the user interface level.

The specification languages of coq and matita include several classes of tac-
tics each differing in the kind of information the user must provide to the system
in order to perform the corresponding proof step This information appears as
“arguments” (i.e. sub-expressions) inside the tactics themselves.

We can classify the tactics on the basis of their arguments as follows:

Definition 3 (classification of tactics according to their arguments).

1. the procedural arguments are fragments of proof terms not including types;
the procedural tactics are tactics having arguments of this kind;

2. the declarative arguments are types that, according to the PAT interpreta-
tion, may correspond to fragments of the statement to prove; the declarative
tactics are tactics having at least one argument of this kind;

3. the locative arguments are pointers to parts of the conjecture (usually to its
premises) used to localise the results of the expressions in which they appear;
the locative tactics are tactics having arguments of this kind;

4. other arguments usually appear in automated tactics, i.e. tactics whose effect
is to build fragments of proofs following some automated decision procedures;
such arguments are used to tune these procedures.

According to what we said in Subsection 2.2, if we represent a proof with
declarative tactics, we obtain a view focused on its contents, while if we use
procedural tactics, we obtain a view focused on its structure. Therefore in the
perspective of adapting and maintaining proofs at the user interface level, we
propose in this paper to limit the use of declarative tactics while pursuing the
use of procedural tactics.

In the following we present the tactical expressions we will use in the trans-
formation we are discussing, explaining their semantics in terms of their result,

so let JΓ ⊢ u,UK be the CIC proof term produced by the evaluation of the ex-
pression U in the context of the conjecture Γ ⊢ u, when the evaluation succeeds.

In the notation below we implicitly use the tactical U ; [W1 · · ·Wn] that
denotes the generalised sequential composition of W1 · · ·Wn after U .

Definition 4 (primitive tactical expressions).

1. intro as x; [U] builds a local declaration in front of the proof term resulting
from the evaluation of U ; formally we give the following semantics:
JΓ ⊢ Πx:v.u, intro as x; [U]K ≡ λx:v.JΓ.x:v ⊢ u,UK;
notice that we can expect the system to perform weak head reduction and
α-conversion on the conclusion of the conjecture if needed;
also notice that intro is a procedural tactic according to our definition be-
cause its argument (i.e. x) is part of the constructed proof term;

2. pose v as x; [U] builds a local definition in front of the proof term resulting
from the evaluation of U ; formally we give the following semantics:
JΓ ⊢ u, pose v as x; [U]K ≡ x←v.JΓ.x←v ⊢ u,UK;
notice that pose is a procedural tactic according to our definition because its
arguments (i.e. x and v) are parts of the constructed proof term;

3. cut w as x; [U W] is similar to pose v as x; [U] but works under some
restrictions; formally: if Γ ⊢ w : Prop then JΓ ⊢ u, cut w as x; [U W]K ≡
x←JΓ ⊢ w,W K.JΓ.x:w ⊢ u,UK;
notice that cut w as x is a declarative tactic since w is a type;

4. apply t; [W1 · · ·Wn] builds an application in front of the proof terms result-
ing from the evaluation of W1 · · ·Wn; formally we give the following seman-
tics: if Γ ⊢ t : Πx1 · · ·xn:w1 · · ·wn.u and v1 ≡ JΓ ⊢ w1,W1K and . . . and
vn ≡ JΓ ⊢ wn[v1 · · · vn−1/x1 · · ·xn−1],WnK then
JΓ ⊢ u[v1 · · · vn/x1 · · ·xn], apply t; [W1 · · ·Wn]K ≡ (t v1 · · · vn);
notice that apply t is a procedural tactic according to our definition because
its argument (i.e. t) is part of the constructed proof term; also notice that
in practice the system can infer some of the v1 · · · vn by unification, so the
corresponding expression Wi must not be specified in the list [W1 · · ·Wn]
that follows apply; furthermore the expressions in this list are evaluated
respecting the order so when each Wi is evaluated the terms v1 · · · vi−1 to
place in the conclusion of the corresponding conjecture, i.e. wi, are known;
Finally for n = 0 we obtain the base case of the induction by which we are
defining the tactical expressions: if Γ ⊢ t : u then JΓ ⊢ u, apply tK ≡ t;
Notice that in real implementations Γ ⊢ t : u implies JΓ ⊢ u, apply tK ≡ t
also when u is a function type as an extension of the previous case.

5. cases v; [W1 · · ·Wn] builds a proof by cases on v whose branches result from
the evaluation of W1 · · ·Wn; formally we give the following semantics: if v
belongs to an inductive type with constructors c1 · · · cn and if Γ ⊢ ci : wi, then
JΓ ⊢ u, cases v; [W1 · · ·Wn]K ≡ (v ⇒ JΓ ⊢ w1,W1K · · · JΓ ⊢ wn,WnK : u);
notice that cases is a procedural tactic according to our definition;

6. change u2; [U] changes the conclusion of the conjecture in which U is evalu-
ated; formally if Γ ⊢ u2 ↔ u1 then JΓ ⊢ u1, change u2; [U]K ≡ JΓ ⊢ u2, UK;
notice that change is a declarative tactic because its argument u2 is a type;

7. change w2 in x; [U] changes the type of the local declaration of x in the
premises of the conjecture in which U is evaluated; formally if Γ1 ⊢ w2 ↔ w1

then JΓ1.x:w1.Γ2 ⊢ u, change w2 in x; [U]K ≡ JΓ1.x:w2.Γ2 ⊢ u,UK;
this is the locative version of the change tactic.

8. We define U as “well-formed” in the context of Γ ⊢ u if JΓ ⊢ u,UK exists.

Some tactics of the above list are declarative. In coq and matita change

has some procedural counterparts (mainly simplify and unfold) whose results
are not easily predictable, and cut can be replaced by lapply in some cases.

A result on the tactical expressions defined above is easily provable and
explains in exact terms why such expressions represent proofs:

Theorem 1 (soundness).
If U is well formed in Γ ⊢ u then Γ ⊢ JΓ ⊢ u,UK : u.

Proof. By induction on the structure of U using the type rules of CIC [1]. ⊓⊔

2.4 Induction Principles and Related Tactical Expressions

A CIC-based proof assistant allows to define data structures by means of induc-
tive types and provides automatically defined lemmas proving forms of structural
induction on the elements of such types. These lemmas are termed default induc-
tion principles. Induction principles have a particular shape, whose description
goes beyond the scope of this paper, and the system provides specialised versions
of the apply tactic as facilities for invoking these principles in proofs.

In particular we want to mention the following tactical expressions:

Definition 5 (tactical expressions related to induction principles).

1. if v is an element of an inductive type w with n constructors and t is an elim-
ination principle over w then elim v using t; [W1 · · ·Wn] has the semantics
of apply t; [· · · W1 · · ·Wn · · · apply v]; the extra arguments denoted by · · ·
are inferred by the system;

2. rewrite right v; [W] and rewrite left v; [W] are special cases of the
above for two induction principles over the type denoting Leibniz equality;

3. elim v using t in y1 · · · yn as x; [U] is the locative version of elim and has
the semantics of pose (t · · · y1 · · · yn · · · v) as x; [U]; this represents struc-
tural induction applied in a forward reasoning manner;

4. the locative version of rewrite are also provided:
rewrite right v in y as x; [U] and rewrite left v in y as x; [U].

This definition is informal because these tactical expressions are not strictly
necessary since in principle they can be expressed in terms of other expressions).
Nevertheless we decide to use them in our transformation since the user certainly
expects to see them in the resulting description of the proof.

Moreover elim and rewrite, as implemented in matita, may take an ar-
gument, representing a CIC term pattern, that is not considered in the above
syntax and that is involved in the construction of the resulting term.

3 From CIC Proof Terms to Tactical Expressions

The purpose of the transformation ǫ we are presenting in this section is to con-
struct a tactical expression whose result is a given proof term. Formally speaking,
given t such that Γ ⊢ t : u we seek ǫ(Γ, t) such that JΓ ⊢ u, ǫ(Γ, t)K = t. The
auxiliary precondition Γ ⊢ u : Prop ensures that t is really a proof term.

The expression ǫ(Γ, t) is computed in two steps: first we preprocess t with a
proof term optimiser returning a term ω1(Γ, t) such that Γ ⊢ ω1(Γ, t)↔ t, then
we seek the tactical expression representing ω1(Γ, t) using a function π. So in the
end ǫ is π after ω1. The subsections below illustrate these functions in detail.

3.1 CIC Proof Term Optimisation

Proof terms are optimised to improve the quality of the proofs represented at the
user interface level in the perspective of an easier maintenance of these proofs.

The optimised version of a proof term t, which we denote by ω1(Γ, t), is
computed by repeatedly applying a number of conversion steps to t until no
application is possible. The optimisation works on every sub-term of t but we
apply it only to proof terms because normally a conversion performed elsewhere
does not improve the the final representation of the proof significantly. Some
conversion steps performed by ω1 appear in [4] as part of a calculus termed λδ.

According to the “direct proof paradigm”, i.e. the simplest proof strategy
coming from standard mathematical practice, the part of a proof carried out by
forward reasoning should precede the part of that proof carried out by backward
reasoning. At the logical level this means that abbreviations (i.e. local defini-
tions) should precede applications in the proof term (recall that the application
of a lemma v in a backward reasoning manner is represented by the construc-
tion (v · · ·) while the same lemma applied in a forward reasoning manner is
represented as x←(v · · ·).t). Since in our experience exploiting this paradigm
contributes to clarify the structure of the final proof, our optimisation proce-
dure takes care of moving the abbreviations towards the top part of the proof
term whenever possible while leaving the applications in the bottom part.

The sub-terms that are certainly shown as procedural arguments after the
transformation π are the head of applications (appearing in apply expressions),
the first argument of proofs by cases (appearing in cases expressions) and the
last argument of the applications of an inductive principle (appearing in elim

expressions or the like). In principle these sub-terms can be very complex and
verbose so we choose to abbreviate them when they are not atomic (i.e. we
perform an anticipation of these sub-terms by ζ-expansion [1]).

If t expects m formal parameters then apply t; [W1 · · ·Wn] can be well
formed only if n ≤ m. This means that an application of t represented using
apply t is better handled if the number of its arguments is less or equal to m.
In this paper an application with this property will be termed sober. To ensure
that all applications are sober, ω1 exploits anticipation by ζ-expansion [1].

Formally ω1(Γ, t) is defined by iterating the following rules until a fixed point
is reached. The main properties of ω1 are listed below.

Definition 6 (the rules for ω1).

1. if t is not of sort Prop in Γ then ω1(Γ, t) ≡ t; else
2. ω1(Γ, c) ≡ c;
3. ω1(Γ, x) ≡ x;
4. if ω1(Γ.x←v, t1) = t2 and x does not occur in t2 then ω1(Γ, x←v.t1) ≡ t2

(ζ-contraction of [4]); else
5. if v1 is of sort Prop and ω1(Γ, v1) = y←v.v2 then

ω1(Γ, x←v1.t) ≡ y←v.ω1(Γ, x←v2.t); else
6. if ω1(Γ, v) = (v0 · · · v1 · · · vi−1 vi vi+1 · · · vn · · ·) where v0 is an inductive

principle and v1 · · · vn are the proofs of the inductive cases, if vi is not a local
reference and if y is fresh in Γ then
ω1(Γ, x←v.t) ≡ ω1(Γ, x←y←vi.(v0 · · · v1 · · · vi−1 y vi+1 · · · vn · · ·).t)
(ζ-expansion of [1] or δζ-expansion of [4]); else

7. ω1(Γ, x←v.t) ≡ x←ω1(Γ, v).ω1(Γ.x←v, t);
8. if ω1(Γ.x:w, t1) = y←v.t2 and x does not occur in v then

ω1(Γ, λx:w.t1) ≡ y←v.ω1(Γ, λx:w.t2); else
9. ω1(Γ, λx:w.t) ≡ λx:ω1(Γ,w).ω1(Γ.x:w, t);

10. if ω1(Γ, t1) = x←v.t2 then
ω1(Γ, (t1 v1 · · · vn)) ≡ x←v.ω1(Γ, (t2 v1 · · · vn)) (υ-swap of [4]); else

11. if ω1(Γ, t1) = λx:w.t2 and t2 contains at most one free occurrence of x then
ω1(Γ, (t1 v v1 · · · vn)) ≡ ω1(Γ, (t2[v/x] v1 · · · vn)) (β-contraction of [1]); else

12. if ω1(Γ, t1) = λx:w.t2 then
ω1(Γ, (t1 v v1 · · · vn)) ≡ ω1(Γ, (x←v.t2 v1 · · · vn)) (β-contraction of [4]); else

13. if ω1(Γ, t1) = (t2 v′

1 · · · v
′

m) then
ω1(Γ, (t1 v1 · · · vn)) ≡ ω1(Γ, (t2 v′

1 · · · v
′

m v1 · · · vn)); else
14. if ω1(Γ, t1) = t2 and Γ ⊢ t2 : Πx1 · · ·xm:w1 · · ·wm.u where u is not a

function type and m > 0, if x is fresh in Γ and n > 0, then
ω1(Γ, (t1 v′

1 · · · v
′

m v1 · · · vn)) ≡ ω1(Γ, x←(t1 v′

1 · · · v
′

m).(x v1 · · · vn))
(ζ-expansion of [1] or δζ-expansion of [4]); else

15. if ω1(Γ, vi) = x←v.v′

i and vi is of sort Prop in Γ then
ω1(Γ, (t v1 · · · vn)) ≡ x←v.ω1(Γ, (t v1 · · · vi−1 v′

i vi+1 · · · vn)); else
16. if ω1(Γ, t1) = t2 and Γ ⊢ t2 : Πx1 · · ·xm:w1 · · ·wn.u where u is not a func-

tion type and n > 0, if t2 is an induction principle and vn is not atomic and
x is fresh in Γ then ω1(Γ, (t1 v1 · · · vn)) ≡ ω1(Γ, x←vn.(t1 v1 · · · vn−1 x))
(ζ-expansion of [1] or δζ-expansion of [4]); else

17. ω1(Γ, (t v1 · · · vn)) ≡ (ω1(Γ, t) ω1(Γ, v1) · · ·ω1(Γ, vn));
18. ω1(Γ, (t : v)) ≡ ω1(Γ, t) (ǫ-contraction of [4]);
19. if ω1(Γ, t1) = x←v.t2 with t1 of sort Prop in Γ then

ω1(Γ, (t1 ⇒ v1 · · · vn : w)) ≡ x←v.ω1(Γ, (t2 ⇒ v1 · · · vn : w))
20. if ω1(Γ, t1) = (ci v′

1 · · · v
′

m) then
ω1(Γ, (t1 ⇒ v1 · · · vn : w)) ≡ ω1(Γ, (vi v′

1 · · · v
′

m)) (ι-contraction of [1]); else
21. if ω1(Γ, t1) = t2 and t2 is not atomic and x is fresh in Γ , then

ω1(Γ, (t1 ⇒ v1 · · · vn : w)) ≡ x←t2.ω1(Γ, (x⇒ v1 · · · vn : w))
(ζ-expansion of [1] or δζ-expansion of [4]); else

22. if ω1(Γ, vi) = x←v.v′

i and vi is of sort Prop in Γ then
ω1(Γ, (t⇒ v1 · · · vn : w)) ≡ x←v.ω1(Γ, (t⇒ v1 · · · vi−1 v′

i vi+1 · · · vn : w));

23. ω1(Γ, (t⇒ v1 · · · vn : w)) ≡ (ω1(Γ, t)⇒ ω1(Γ, v1) · · ·ω1(Γ, vn) : ω1(Γ,w)).

Coming now to the issue of proving some properties of the function ω1, we
observe that any fully developed proof by induction on twenty-three cases can
not be placed in the present paper, so the following proofs will be only sketched.

In particular we conjecture that the computation of ω1(Γ, t) always termi-
nates and that its complexity can be exponential in the size of the term t.

Theorem 2 (fixed point).

1. (fixed point) ω1 after ω1 is ω1;
2. (compatibility) if Γ ⊢ t : u then Γ ⊢ ω1(Γ, t) : u and Γ ⊢ ω1(Γ, t)↔ t.

Proof.

1. ω1(Γ, t) is defined as a fixed point;
2. ω1 performs conversion steps that are known to preserve the type [7]. ⊓⊔

3.2 Representation of Optimised CIC Proof Terms

Here we present the function π that produces a tactical expression U starting
from a CIC term t typable in a context Γ . If t is optimised in the sense of
Subsection 3.1, we guarantee that U can be evaluated and that its result is t.

The expression U includes two sorts of proof steps: the construction steps
corresponding to the constructors of t and the conversion steps that we detect by
comparing the inferred type and the expected type of the subterms of t according
to Coscoy’s double type-inference [11]. Notice that the inferred type of a term v
is always defined while the expected type of v is defined only in some cases, so
when it is not defined, we set it as the inferred type of v for convenience.

The most delicate aspect of the design of π is the translation of an application
t′ ≡ (t v1 · · · vn) into an effective invocation of the apply t tactic. In particular
we have to make sure that the conclusion u of the conjecture in the context
of which this tactic is evaluated, can be unified with the inferred type of t′.
Since the amount of conversion performed during unification depends on the
particular system and is unpredictable in practice, we choose to assume that
apply performs no conversion when unification is invoked, and we convert u by
hand by an explicit invocation of the change tactic. Being u the expected type
of t′ [11], this conversion is needed only when the expected type of t′ differs from
the inferred type of t′ (this can happen if t′ is an argument of an application).

A similar problem arises when we detect a difference between the inferred
type and the expected type of the argument, say v, of a construction that we
want to render with a cases v or an elim v using · · ·, since evaluating such a
tactic requires computing the inferred type of v. In this case v is a reference to a
local premise x (after optimisation) so we invoke change . . . in x. In the other
cases the explicit conversion can be safely omitted.

The rules defining the function π are given below with the rules of two aux-
iliary functions γ1 and γ2 used to handle conversion. Notice that we make no
assumptions on how the inferred and expected types of a term are computed.

Definition 7 (the rules for γ1).

1. if the inferred type u of t differs from the expected type of t then γ1(Γ, t, U) ≡
change u; [U]; else

2. γ1(Γ, t, U) ≡ U .

Definition 8 (the rules for γ2).

1. if Γ ≡ Γ1.x:w.Γ2 and if w is not the inferred type of x then
γ2(Γ, x, U) ≡ change w in x; [U]; else

2. γ2(Γ, t, U) ≡ U .

Definition 9 (the rules for π).

1. if t is not of sort Prop then π(Γ, t) ≡ γ1(Γ, t, apply t); else
2. if t ≡ c or t ≡ x then π(Γ, t) ≡ γ1(Γ, t, apply t);
3. π(Γ, λx:w.t) ≡ intro as x; [π(Γ.x:w, t)];
4. if v′ ≡ (t′ · · · y1 · · · yn · · · v) where t′ is an induction principle and y1 · · · yn

are the proofs of the inductive cases, if Γ ⊢ v′ : w′ and Γ ⊢ w′ : Prop then
π(Γ, x←v′.t) ≡ γ2(Γ, v, γ2(Γ, y1, · · · γ2(Γ, yn, U) · · ·))
for U ≡ elim v using t′ in y1 · · · yn as x; [π(Γ.x:w′, t)]
when Γ.x←v′ ⊢ t : t′ and x does not occur in t′; else

5. if v′ ≡ (t′ · · · y1 · · · yn · · · v) where t′ is an induction principle and y1 · · · yn

are the proofs of the inductive cases then
π(Γ, x←v′.t) ≡ γ2(Γ, v, γ2(Γ, y1, · · · γ2(Γ, yn, U) · · ·))
for U ≡ elim v using t′ in y1 · · · yn as x; [π(Γ.x←v′, t)]; else

6. If Γ ⊢ v : w and Γ ⊢ w : Prop and Γ.x←v ⊢ t : t′ and x does not occur in t′,
then π(Γ, x←v.t) ≡ cut w as x; [π(Γ.x:w, t) π(Γ, v)]; else

7. π(Γ, x←v.t) ≡ pose v as x; [π(Γ.x←v, t)];
8. if t′ ≡ (t · · · v1 · · · vn · · · v) where t is an induction principle and v1 · · · vn

are the proofs of the inductive cases then
π(Γ, t′) ≡ γ2(Γ, v, γ1(Γ, t′, elim v using t; [π(Γ, v1) · · ·π(Γ, vn)])); else

9. if t′ ≡ (t v1 · · · vn) then π(Γ, t′) ≡ γ1(Γ, t′, apply t; [π(Γ, v1) · · ·π(Γ, vn)]);
10. if t ≡ (v ⇒ t1 · · · tn : w) then π(Γ, t) ≡ γ2(Γ, v, γ1(Γ, t, U));

for U ≡ cases v; [π(Γ, v1) · · ·π(Γ, vn)];
11. π(Γ, (t : w)) ≡ π(Γ, t);
12. rewrite tactics are used in place of elim tactics when possible.

We can set the following results about the transformation π:

Theorem 3 (correctness).

1. (correctness) if Γ ⊢ t : u then JΓ ⊢ u, ǫ(Γ, t)K = ω1(Γ, t);
2. (round trip) if Γ ⊢ t : u and if U ≡ ǫ(Γ, t) then ǫ(Γ, JΓ ⊢ u,UK) = U .

Proof.

1. Once the statement is rephrased like Γ ⊢ t : u and t′ ≡ ω1(Γ, t) implies
JΓ ⊢ u, π(Γ, t′)K = t′, given that t′ is optimised and that γ1 and γ2 do not
affect the result of the expression they are applied to, the proof becomes
straightforward;

2. unfolding t′, clause 1 gives JΓ ⊢ u, ǫ(Γ, t)K = ω1(Γ, t) that, by Theorem 2.1,
implies ω1(Γ, JΓ ⊢ u, ǫ(Γ, t)K) = ω1(Γ, t) by which we can conclude
ǫ(Γ, JΓ ⊢ u, ǫ(Γ, t)K) = ǫ(Γ, t) meaning that ǫ after J K after ǫ is ǫ. ⊓⊔

4 Implementation and Testing in a Real Case

In this section we discuss our own implementation of the transformation ǫ (see
Section 3) in the proof assistant matita and the tests we used to verify it.

4.1 Implementation Issues

The current version of the proof assistant matita provides our transformation
ǫ as an experimental feature whose implementation is still under development.

Given the uniform resource identifier (URI) of a theorem in the Hypertextual
Electronic Library of Mathematics (HELM) [12], that is the digital library of
matita, the tactical expression representing its proof is computed as follows:

Definition 10 (ǫ transformation pipeline).

1. the proof is read from the library obtaining its representation at the logical
level as a plain CIC proof term t0, i.e. the initial version of the proof;

2. the transformation ω1 (see Subsection 3.1) is applied to t0 giving a plain CIC
proof term t1, i.e. the optimised version of t0;

3. t1 is type-checked and every sub-term is annotated with its inferred and ex-
pected types according to Coscoy’s double type-inference algorithm [11]; this
returns an annotated CIC proof term t2;

4. the transformation π (see Subsection 3.2) is applied to t2 giving a tactical
expression T3 represented in an ad hoc intermediate format designed by us;

5. T3 is encoded into a tactical expression T4 of Grafite, the knowledge represen-
tation language of matita at the user interface level; this format contains
many details that are omitted in our intermediate format;

6. T4, the final representation of the proof, is processed by the Grafite pretty
printer and rendered as a script that the user can store or modify at will.

We stress that the segmentation of the above pipeline decouples its transfor-
mation stages from its type checking and rendering stages allowing a factorised
implementation of the whole procedure.

Currently Definition 6.6 and Definition 6.8 are not implemented while Defi-
nition 6.11 is implemented only in the case of t2 containing no free occurrences
of x; Definition 6.12 is used otherwise. Furthermore Definition 9.4 and Defini-
tion 9.5 are implemented only in the case rewrite tactics can be used, since
matita does not implement the tactic elim · · · in · · · at the moment. In addi-
tion, the current implementation of rewrite · · · v in y as x in this system does
not follow the semantics of Definition 5.3 when y refers to a local definition.

Taking this argument into account would force us to discuss the structure of
inductive principles and this is not in the scope of the present paper.

Concerning Definition 9.3, we exploit a generalisation of intro as x; [U]
provided by matita in the form intro as x1 · · ·xn; [U] with the semantics
of a repeated intro before U . Concerning Definition 9.6 we use a variant of
cut w as x; [U W] provided by matita in the form cut w as x; [id W]; [U]

because we want to present W before U in the resulting proof. This approach
forces us to introduce the id (identity) tactic having the meaning of a place-
holder for a postponed expression. Formally: JΓ ⊢ u, id; [U]K ≡ JΓ ⊢ u,UK and
JΓ ⊢ u, T ; [U1 · · ·Ui id U ′

1 · · ·U
′

j]; [U]K ≡ JΓ ⊢ u, T ; [U1 · · ·Ui U U ′

1 · · ·U
′

j]K.
Finally, concerning Definition 9.9, we said in Subsection 2.3 that the system

can infer some terms among v1 · · · vn by unification, but it is a matter of facts
that higher order unification may fail in some cases.

To solve this inconvenient we take advantage of the possibility offered by
matita to indicate the unifiers used by the apply tactic. In particular we detect
the inferable functional terms among v1 · · · vn and we specify them as explicit
unifiers in the apply tactical expression. Notice that although these terms appear
as procedural arguments in this expression, we judge that anticipating them by
ζ-expansion brings no benefit to the resulting proof.

Each proof by cases can be turned into a proof by induction carried out by
applying a system-provided theorem denoting a default induction principle.

We may extend ω1 with this transformation step for two reasons: firstly we
may want to reuse the optimised proof term in those logical frameworks that
support proofs by induction in place of proofs by cases, as the Minimal Type
Theory [13]; secondly the set of constructions appearing in the optimised proof
term is reduced. We strongly stress that this transformation is not a conversion
according to CIC rules, so a term may not be well typed after this extended
optimisation. Nevertheless it is well typed in the great majority of the real cases.

Definition 11 (critical optimisation steps).

1. if Γ ⊢ v : w and c is the default induction principle of w for the sort Prop
then ω1(Γ, (v ⇒ t1 · · · tn : w)) ≡ ω1(Γ, (c · · · v)).

4.2 Testing Issues

We tested our implementation of the transformation ǫ on the 668 proofs of [4].
These proofs, originally appearing as tactical expressions of the Gallina specifica-
tion language version 7 [3, 14], were processed by the proof assistant coq, which
turned them into CIC proof terms. These terms where processed by the proof as-
sistant matita, which turned them into objects of HELM and they are available
in this form inside the HELM directories cic:/matita/LAMBDA-TYPES/Base-1
and cic:/matita/LAMBDA-TYPES/LambdaDelta-1. The transformation ǫ was
applied at this stage.

Three proofs of these were actually generated by coq without evaluating a
tactical expression2 and make the development self-contained.

Figure 1 shows the frequency of the optimisations performed by ω1. Defi-
nition 6.18 is never applied because the proofs do not contain any type cast
construction. All proofs successfully type-check after optimisation.

Sixteen proofs do not reach stage 4 of Definition 10 because of problems in
the current implementation of Coscoy’s algorithm in matita.

2 These proofs were produced by the generate inversion directive of coq 7.3.1 [3]

Optimisation Action Applied

Definition 6.4 information removal 250 times

Definition 6.5 definition lifting 429 times

Definition 6.10 definition lifting 2360 times

Definition 6.12 information removal 227 times

Definition 6.13 nested application 494 times

Definition 6.14 anticipation 645 times

Definition 6.15 definition lifting 3781 times

Definition 6.16 anticipation 2163 times

Definition 11.1 critical step 254 times

Any of the above 10603 times

Fig. 1. Frequency of the optimisations

Fourteen tactical expressions resulting from the transformation π applied to
the remaining proofs, are not evaluated correctly by matita because of problems
in the current implementation of the elim tactic.

We stress that the generated proofs should always be checked by matita es-
pecially if critical optimisation steps are allowed as in the case we are discussing.

Source (content) Scripts size (type) Tactics

Initial coq input (668 proofs − 3) 0.4 Mbytes (Gallina) 9879

Output of coq (668 CIC proof terms) 2.8 Mbytes (Gallina)

Initial matita input (668 CIC proof terms) 4.1 Mbytes (Grafite)

Output of π (668 proofs − 16) 2.1 Mbytes (Grafite) 51289

Fig. 2. Volume of the data

Figure 2 shows the volume of the data (in scripts size and complexity) in-
volved in the whole transformation from initial coq input to final π output.

Notice that the scripts are self-contained so they include the definitions not
found in coq’s library. This additional content is considered in the calculation of
size, but it is not considered in the calculation of complexity. Commented texts
and unnecessary black characters are not considered in the computation of sizes.

Notice that the initial Gallina scripts are smaller than the final Grafite scripts
both in size and in amount of tactics. This is because in the initial scripts we
highly exploit automation tactics and code factorisation through macro tactics
written in the ltac language, while in the final scripts we use just primitive
tactics without factorisation. In particular the scripts size increases by a factor
5.3 while the number of tactics, removing from the final scripts the id tactics that
we could avoid and the other tactics of the 3 generated proofs (4912 all together),
increases by a factor 4.7. We stress that these values are comparable with other
values of the “de Bruijn loss factor” [15] found in the literature [16, 17]. This
factor represents the increment in complexity occurring when the information
hidden by automation and abstraction is fully displayed. The two factors we

give here can be considered the “apparent loss factor” and the “intrinsic loss
factor” in the sense of [17]. Remarkably the difference of size between the final
coq output and the initial matita input (increment factor: 1.5) is entirely due
to the greater verbosity of Grafite with respect to Gallina, since all data use the
same concrete representation format. i.e. the ASCII-7 encoding.

It would be interesting to compare the evaluation times of the two sets of
scripts once provided to the respective proof assistants (running in the same
conditions) and to see if many primitive tactics are evaluated faster or slower
than few high-level tactics producing the same proof terms. Unfortunately we
can not perform tests like this one at the moment because coq 7.3.1 and matita

can not parse their own outputs in full at the moment.

4.3 A Running Example

In this section we present the result of the transformation ǫ applied to one of
the 668 proofs mentioned in Subsection 4.2. Namely we consider the statement:

theorem le x pred y : ∀(y : nat).(∀(x : nat).((lt x y)→ (le x (pred y))))

that formalises the property of the natural numbers: “x < y implies x ≤ y−1”. Its
HELM URI is cic:/matita/LAMBDA-TYPES/Base-1/ext/arith/le x pred y.con
and the constants occurring in it, i.e. nat, lt, le, pred, refer to entities defined
in the standard library of coq as included in HELM.

Figure 3 shows the initial proof term of the statement as produced by coq

and translated faithfully in Grafite. Notice the placeholder ?, added during the
translation process, for a term that matita can infer.

The optimised version of the proof term is shown in Figure 4 and results from
the application of the transformations described by Definition 6.10 (twice), Def-
inition 6.13, Definition 6.14 and Definition 11.1. In particular by Definition 6.10
the construction ((let H2 ≡ . . . in (False ind . . . H2)) H0) becomes
let H2 ≡ . . . in ((False ind . . . H2) H0), then the nested application is de-
tected and we get let H2 ≡ . . . in (False ind . . . H2 H0) by Definition 6.13,
then the non-sober application is detected and by Definition 6.14 we get
let H2 ≡ . . . in ((let LOCAL ≡ (False ind . . . H2) in LOCAL) H0), which,
by the second application of Definition 6.10, becomes
let H2 ≡ . . . in let LOCAL ≡ (False ind . . . H2) in (LOCAL H0). Secondly
by Definition 11.1 the construction match H in le . . . (proof by cases) becomes
(le ind . . . H) (corresponding proof by induction carried out by the application
of a default induction principle). The other match constructions are not affected
by this transformations because they do not represent proofs.

Figure 5 shows the Grafite proof script derived from the optimised version of
the proof term. Notice that the tactics change and elim take a locative argument
that denotes a conjecture pattern. This pattern contains the placeholders % and
? representing the terms (or subterms) on which these tactics must act and
the other terms (or subterms) respectively. Look at [2] Section 3.2 for details.
Also notice that the intros tactic can take an _ in place of a premise name

to mean that the introduced premise will not be used to complete the proof
and is to be removed from the current conjecture context. More generally the
author is working on an improved version of π that exploits the clear tactic to
remove a premise from the current conjecture context as soon as the proof can
be completed without it.

5 Conclusions and Future Work

In the previous sections we proposed an effective procedure for translating a proof
term of the Calculus of Inductive Constructions (CIC), which is very similar to
a program written in a prototypal functional programming language, into a
tactical expression of a CIC-based proof assistant’s user interface language.

This procedure allows to convert a proof encoded at the logical level and
coming from any source, i.e. from a digital library or from another proof de-
velopment system, into an equivalent proof presented in the proof assistant’s
editable high-level format. In particular we can improve the quality of user-
provided proof scripts by regenerating them from their logical level content. In
fact the scripts generated by the transformation we presented are clean (i.e. they
contain no detours or unused information), they are specifically designed to be
easily maintained and in the end they may contain many useful optimisations
that perhaps the user would not introduce systematically in hand-written proof
scripts, especially in the context of a large-scale formal development.

As a use case, we reported on our implementation of the procedure in the
system matita [2] and on the translation of 668 proofs generated by the system
coq 7.3.1 [3], from their logical representation as CIC proof terms to their high-
level representation as tactical expressions of matita’s user interface language.

We noticed that the comparison between the initial coq scripts producing
the proofs and the final matita scripts resulting from the conversion, gives an
increment factor in size and complexity that is compatible with other values of
the “de Bruijn loss factor” [15] found in the literature. This increment occurs be-
cause the initial scripts are based on sophisticated tactics providing automation
and code factorisation, whereas the final scripts are based on primitive tactics.

Our next objective is to improve the conversion procedure so that the in-
crement factor is reduced as much as possible. In order to achieve this goal,
the current output of our procedure needs further processing (before stage 5
of Definition 10) aimed at replacing groups of primitive tactics with advanced
tactics having the same semantics. This means that advanced tactics with a for-
mal semantics must be provided. We are also interested in limiting the use of
declarative tactics in Definition 9 favouring their procedural counterparts.

Notice that the measure of complexity we used for the scripts is the number
of tactics they contain. This measure does not take into account the complexity
of the CIC terms appearing in the scripts as tactical arguments. We can esti-
mate such complexity by counting the number of nodes occurring in the tree
representation of these terms. So we plan to improve the accuracy of our tests
by including this measure as well.

References

1. Coq development team: The Coq Proof Assistant Reference Manual Version 8.1.
INRIA, Orsay (Feb 2007)

2. Asperti, A., Sacerdoti Coen, C., Tassi, E., Zacchiroli, S.: User Interaction with the
Matita Proof Assistant. Journal of Automated Reasoning, Special Issue on User
Interfaces for Theorem Proving. To appear (2006)

3. Coq development team: The Coq Proof Assistant Reference Manual Version 7.3.1.
INRIA, Orsay (Oct 2002)

4. Guidi, F.: Lambda-Types on the Lambda-Calculus with Abbreviations. Submitted
to ACM TOCL (Nov 2006) http://arxiv.org/cs.LO/0611040.

5. Barthe, G., Pons, O.: Type Isomorphisms and Proof Reuse in Dependent Type
Theory. In Honsell, F., Miculan, M., eds.: 4th International Conference on Founda-
tions of Software Science and Computation Structures (FOSSACS 2001). Volume
2030 of LNCS., Springer (2001) 57–71

6. Sacerdoti Coen, C.: From Proof-Assistants to Distributed Libraries of Mathemat-
ics: Tips and Pitfalls. In: Mathematical Knowledge Management 2003. Volume
2594 of LNCS., Springer (2003) 30–44

7. Coquand, T., Paulin-Mohring, C.: Inductively defined types. In Martin-Löf, P.,
Mints, G., eds.: Proceedings of the International Conference on Computer Logic
(Colog’88). Volume 417 of LNCS., Springer (1990)

8. Kamareddine, F., Laan, T., Nederpelt, R.: A Modern Perspective on Type Theory
From its Origins Until Today. Volume 29 of Applied Logic Series. Kluwer Academic
Publishers, Norwell (May 2004)

9. Sacerdoti Coen, C.: Declarative Representation of Proof Terms. Submitted to: Pro-
gramming Languages for Mechanised Mathematics Workshop (PLMMS07) (2007)

10. Sacerdoti Coen, C.: Explanation in Natural Language of λ̄µµ̃-terms. In: 4th
International Conference on Mathematical Knowledge Management (MKM2005).
Volume 3863 of LNAI., Springer (2006) 234–249

11. Coscoy, Y.: A Natural Language Explanation for Formal Proofs. In Retoré, C.,
ed.: Int. Conf. on Logical Aspects of Computational Linguistics (LACL). Volume
1328 of LNAI., Springer (Sept 1996) 149–167

12. Asperti, A., Padovani, L., Sacerdoti Coen, C., Guidi, F., Schena, I.: Mathematical
Knowledge Management in HELM. Annals of Mathematics and Artificial Intelli-
gence 38(1) (May 2003) 27–46

13. Maietti, M., Sambin, G.: Towards a minimalist foundation for constructive math-
ematics. In Crosilla, L., Schuster, P., eds.: From Sets and Types to Topology and
Analysis: Practicable Foundations for Constructive Mathematics. Oxford Univer-
sity Press, Oxford (2005) Forthcoming.

14. Guidi, F.: λ-Types on the λ-Calculus with Abbreviations. For-
mal development with the proof assistant coq (Jan 2006)
http://www.cs.unibo.it/˜fguidi/download/LAMBDA-TYPES.tgz.

15. de Bruijn, N.: A survey of the project Automath. In: Selected Papers on Automath.
North-Holland, Amsterdam (1994) 141–161

16. van Benthem Jutting, L.: Checking Landau’s Grundlagen in the Automath System.
In: Selected Papers on Automath. North-Holland, Amsterdam (1994) 299–301,701–
720,721–732,763–799,805–808

17. Wiedijk, F.: The De Bruijn Factor. Typescript note (2000)
http://citeseer.ist.psu.edu/wiedijk00de.html.

λ(y : nat).(nat ind (λ(n : nat).(∀(x : nat).((lt x n) → (le x (pred n))))) (λ(x :
nat).(λ(H : lt x O)).let H0 ≡ (match H in le return (λ(n : nat).(λ(: (le ? n)).
((eq nat n O) → (le x O)))) with [le n ⇒ (λ(H0 : (eq nat (S x) O)).let H1 ≡
(eq ind nat (S x) (λ(e : nat).(match e in nat return (λ(: nat).P rop) with [O ⇒
False | (S) ⇒ True])) I O H0) in (False ind (le x O) H1)) | (le S m H0) ⇒ (λ(H1 :
(eq nat (S m) O)).((let H2 ≡ (eq ind nat (S m) (λ(e : nat).(match e in nat return (λ(:
nat).P rop) with [O ⇒ False | (S) ⇒ True])) I O H1) in (False ind ((le (S x) m) →
(le x O)) H2)) H0))]) in (H0 (refl equal nat O))) (λ(n : nat).(λ(: ((∀(x : nat).
((lt x n) → (le x (pred n)))))).(λ(x : nat).(λ(H0 : (lt x (S n))).(le S n x n H0))))) y)

Fig. 3. The initial proof term

λ(y : nat).(natind (λ(n : nat).(∀(x : nat).((lt x n) → (le x (pred n))))) (λ(x :
nat).(λ(H : (lt x O)).let H0 ≡ (le ind (S x) (λ(n : nat).((eq nat n O) →
(le x O))) (λ(H0 : (eq nat (S x) O)).let H1 ≡ (eq ind nat (Sx) (λ(e : nat).match e

return (λ : nat.Prop) with [O ⇒ False | (S(: nat)) ⇒ True]) I O H0) in (False ind

(le x O) H1)) (λ(m : nat).(λ(H0 : (le (S x) m)).(λ(: ((eq nat m O) →
(le x O))).(λ(H1 : (eq nat (S m) O)).let H2 ≡ (eq ind nat (Sm) (λe : nat.match e

return (λ : nat.Prop) with [O ⇒ False | (S(: nat)) ⇒ True]) I O H1) in
let LOCAL ≡ (False ind ((le (S x) m) → (le x O)) H2) in (LOCAL H0))))) O H)
in (H0 (refl equal nat O)))) (λ(n : nat).(λ(: (∀(x : nat).((lt x n) →
(le x (pred n))))).(λ(x : nat).(λ(H0 : (lt x (S n))).(le S n x n H0))))) y)

Fig. 4. The intermediate optimised proof term

theorem le_x_pred_y:

(\forall y:nat.\forall x:nat.x<y -> x<=pred y).

intros 1 (y);

elim y using nat_ind in |- ((? -> ? ? % -> ? ? (? %))) names 0; [

intros 2 (x H); change in |- (%) with (x<=O);

cut (O=O -> x<=O) as H0; [id | change in H:(%) with (S x<=O);

elim H using le_ind in |- ((? ? % ? -> ?)) names 0; [

intros 1 (H0); cut match O in nat return \lambda _:nat.Prop with

[O -> False|S (_:nat) -> True] as H1; [id |

rewrite < H0 in |- (%); change in |- (%) with True; apply I];

change in H1:(%) with False;

elim H1 using False_ind in |- (?) names 0 | intros 4 (m H0 _ H1);

cut match O in nat return \lambda _:nat.Prop with

[O -> False|S (_:nat) -> True] as H2; [id |

rewrite < H1 in |- (%); change in |- (%) with True; apply I];

cut (S x<=m -> x<=O) as LOCAL; [id | change in H2:(%) with False;

elim H2 using False_ind in |- (?) names 0];

apply LOCAL; apply H0]]; apply H0; apply refl_equal |

intros 4 (n _ x H0); change in |- (%) with (x<=n);

apply le_S_n; change in |- (%) with (x<S n); apply H0];

qed.

Fig. 5. The final proof script

