DEFINITION ty3_sred_wcpr0_pr0()
TYPE =
       g:G.c1:C.t1:T.t:T.(ty3 g c1 t1 t)c2:C.(wcpr0 c1 c2)t2:T.(pr0 t1 t2)(ty3 g c2 t2 t)
BODY =
        assume gG
        assume c1C
        assume t1T
        assume tT
        suppose Hty3 g c1 t1 t
          we proceed by induction on H to prove c2:C.(wcpr0 c1 c2)t3:T.(pr0 t1 t3)(ty3 g c2 t3 t)
             case ty3_conv : c:C t2:T t0:T :ty3 g c t2 t0 u:T t3:T :ty3 g c u t3 H4:pc3 c t3 t2 
                the thesis becomes c2:C.H5:(wcpr0 c c2).t4:T.H6:(pr0 u t4).(ty3 g c2 t4 t2)
                (H1) by induction hypothesis we know c2:C.(wcpr0 c c2)t3:T.(pr0 t2 t3)(ty3 g c2 t3 t0)
                (H3) by induction hypothesis we know c2:C.(wcpr0 c c2)t4:T.(pr0 u t4)(ty3 g c2 t4 t3)
                    assume c2C
                    suppose H5wcpr0 c c2
                    assume t4T
                    suppose H6pr0 u t4
                      (h1
                         by (pr0_refl .)
                         we proved pr0 t2 t2
                         by (H1 . H5 . previous)
ty3 g c2 t2 t0
                      end of h1
                      (h2by (H3 . H5 . H6) we proved ty3 g c2 t4 t3
                      (h3by (pc3_wcpr0 . . H5 . . H4) we proved pc3 c2 t3 t2
                      by (ty3_conv . . . . h1 . . h2 h3)
                      we proved ty3 g c2 t4 t2
c2:C.H5:(wcpr0 c c2).t4:T.H6:(pr0 u t4).(ty3 g c2 t4 t2)
             case ty3_sort : c:C m:nat 
                the thesis becomes c2:C.(wcpr0 c c2)t2:T.H1:(pr0 (TSort m) t2).(ty3 g c2 t2 (TSort (next g m)))
                    assume c2C
                    suppose wcpr0 c c2
                    assume t2T
                    suppose H1pr0 (TSort m) t2
                      (h1
                         by (ty3_sort . . .)
ty3 g c2 (TSort m) (TSort (next g m))
                      end of h1
                      (h2
                         by (pr0_gen_sort . . H1)
eq T t2 (TSort m)
                      end of h2
                      by (eq_ind_r . . . h1 . h2)
                      we proved ty3 g c2 t2 (TSort (next g m))
c2:C.(wcpr0 c c2)t2:T.H1:(pr0 (TSort m) t2).(ty3 g c2 t2 (TSort (next g m)))
             case ty3_abbr : n:nat c:C d:C u:T H0:getl n c (CHead d (Bind Abbr) u) t0:T :ty3 g d u t0 
                the thesis becomes c2:C.H3:(wcpr0 c c2).t2:T.H4:(pr0 (TLRef n) t2).(ty3 g c2 t2 (lift (S n) O t0))
                (H2) by induction hypothesis we know c2:C.(wcpr0 d c2)t2:T.(pr0 u t2)(ty3 g c2 t2 t0)
                    assume c2C
                    suppose H3wcpr0 c c2
                    assume t2T
                    suppose H4pr0 (TLRef n) t2
                      (h1
                         by (wcpr0_getl . . H3 . . . . H0)
                         we proved ex3_2 C T λe2:C.λu2:T.getl n c2 (CHead e2 (Bind Abbr) u2) λe2:C.λ:T.wcpr0 d e2 λ:C.λu2:T.pr0 u u2
                         we proceed by induction on the previous result to prove ty3 g c2 (TLRef n) (lift (S n) O t0)
                            case ex3_2_intro : x0:C x1:T H5:getl n c2 (CHead x0 (Bind Abbr) x1) H6:wcpr0 d x0 H7:pr0 u x1 
                               the thesis becomes ty3 g c2 (TLRef n) (lift (S n) O t0)
                                  by (H2 . H6 . H7)
                                  we proved ty3 g x0 x1 t0
                                  by (ty3_abbr . . . . . H5 . previous)
ty3 g c2 (TLRef n) (lift (S n) O t0)
ty3 g c2 (TLRef n) (lift (S n) O t0)
                      end of h1
                      (h2
                         by (pr0_gen_lref . . H4)
eq T t2 (TLRef n)
                      end of h2
                      by (eq_ind_r . . . h1 . h2)
                      we proved ty3 g c2 t2 (lift (S n) O t0)
c2:C.H3:(wcpr0 c c2).t2:T.H4:(pr0 (TLRef n) t2).(ty3 g c2 t2 (lift (S n) O t0))
             case ty3_abst : n:nat c:C d:C u:T H0:getl n c (CHead d (Bind Abst) u) t0:T :ty3 g d u t0 
                the thesis becomes c2:C.H3:(wcpr0 c c2).t2:T.H4:(pr0 (TLRef n) t2).(ty3 g c2 t2 (lift (S n) O u))
                (H2) by induction hypothesis we know c2:C.(wcpr0 d c2)t2:T.(pr0 u t2)(ty3 g c2 t2 t0)
                    assume c2C
                    suppose H3wcpr0 c c2
                    assume t2T
                    suppose H4pr0 (TLRef n) t2
                      (h1
                         by (wcpr0_getl . . H3 . . . . H0)
                         we proved ex3_2 C T λe2:C.λu2:T.getl n c2 (CHead e2 (Bind Abst) u2) λe2:C.λ:T.wcpr0 d e2 λ:C.λu2:T.pr0 u u2
                         we proceed by induction on the previous result to prove ty3 g c2 (TLRef n) (lift (S n) O u)
                            case ex3_2_intro : x0:C x1:T H5:getl n c2 (CHead x0 (Bind Abst) x1) H6:wcpr0 d x0 H7:pr0 u x1 
                               the thesis becomes ty3 g c2 (TLRef n) (lift (S n) O u)
                                  (h1
                                     (h1
                                        by (pr0_refl .)
                                        we proved pr0 u u
                                        by (H2 . H6 . previous)
ty3 g x0 u t0
                                     end of h1
                                     (h2
                                        by (getl_drop . . . . . H5)
drop (S n) O c2 x0
                                     end of h2
                                     by (ty3_lift . . . . h1 . . . h2)
ty3 g c2 (lift (S n) O u) (lift (S n) O t0)
                                  end of h1
                                  (h2
                                     by (H2 . H6 . H7)
                                     we proved ty3 g x0 x1 t0
                                     by (ty3_abst . . . . . H5 . previous)
ty3 g c2 (TLRef n) (lift (S n) O x1)
                                  end of h2
                                  (h3
                                     (h1
                                        by (getl_drop . . . . . H5)
drop (S n) O c2 x0
                                     end of h1
                                     (h2
                                        by (pr2_free . . . H7)
                                        we proved pr2 x0 u x1
                                        by (pc3_pr2_x . . . previous)
pc3 x0 x1 u
                                     end of h2
                                     by (pc3_lift . . . . h1 . . h2)
pc3 c2 (lift (S n) O x1) (lift (S n) O u)
                                  end of h3
                                  by (ty3_conv . . . . h1 . . h2 h3)
ty3 g c2 (TLRef n) (lift (S n) O u)
ty3 g c2 (TLRef n) (lift (S n) O u)
                      end of h1
                      (h2
                         by (pr0_gen_lref . . H4)
eq T t2 (TLRef n)
                      end of h2
                      by (eq_ind_r . . . h1 . h2)
                      we proved ty3 g c2 t2 (lift (S n) O u)
c2:C.H3:(wcpr0 c c2).t2:T.H4:(pr0 (TLRef n) t2).(ty3 g c2 t2 (lift (S n) O u))
             case ty3_bind : c:C u:T t0:T :ty3 g c u t0 b:B t2:T t3:T H2:ty3 g (CHead c (Bind b) u) t2 t3 
                the thesis becomes c2:C.H4:(wcpr0 c c2).t4:T.H5:(pr0 (THead (Bind b) u t2) t4).(ty3 g c2 t4 (THead (Bind b) u t3))
                (H1) by induction hypothesis we know c2:C.(wcpr0 c c2)t2:T.(pr0 u t2)(ty3 g c2 t2 t0)
                (H3) by induction hypothesis we know c2:C.(wcpr0 (CHead c (Bind b) u) c2)t4:T.(pr0 t2 t4)(ty3 g c2 t4 t3)
                    assume c2C
                    suppose H4wcpr0 c c2
                    assume t4T
                    suppose H5pr0 (THead (Bind b) u t2) t4
                      (H6
                         by cases on H5 we prove 
                            eq T (THead (Bind b) u t2) (THead (Bind b) u t2)
                              (eq T t4 t4)(ty3 g c2 t4 (THead (Bind b) u t3))
                            case pr0_refl t5:T 
                               the thesis becomes H6:(eq T t5 (THead (Bind b) u t2)).H7:(eq T t5 t4).(ty3 g c2 t4 (THead (Bind b) u t3))
                                suppose H6eq T t5 (THead (Bind b) u t2)
                                suppose H7eq T t5 t4
                                  by (sym_eq . . . H6)
                                  we proved eq T (THead (Bind b) u t2) t5
                                  suppose H8eq T (THead (Bind b) u t2) t4
                                     we proceed by induction on H8 to prove ty3 g c2 t4 (THead (Bind b) u t3)
                                        case refl_equal : 
                                           the thesis becomes ty3 g c2 (THead (Bind b) u t2) (THead (Bind b) u t3)
                                              (h1
                                                 by (pr0_refl .)
                                                 we proved pr0 u u
                                                 by (H1 . H4 . previous)
ty3 g c2 u t0
                                              end of h1
                                              (h2
                                                 (h1
                                                    by (pr0_refl .)
                                                    we proved pr0 u u
                                                    by (wcpr0_comp . . H4 . . previous .)
wcpr0 (CHead c (Bind b) u) (CHead c2 (Bind b) u)
                                                 end of h1
                                                 (h2by (pr0_refl .) we proved pr0 t2 t2
                                                 by (H3 . h1 . h2)
ty3 g (CHead c2 (Bind b) u) t2 t3
                                              end of h2
                                              by (ty3_bind . . . . h1 . . . h2)
ty3 g c2 (THead (Bind b) u t2) (THead (Bind b) u t3)
                                     we proved ty3 g c2 t4 (THead (Bind b) u t3)
(eq T (THead (Bind b) u t2) t4)(ty3 g c2 t4 (THead (Bind b) u t3))
                                  by (previous previous H7)
                                  we proved ty3 g c2 t4 (THead (Bind b) u t3)
H6:(eq T t5 (THead (Bind b) u t2)).H7:(eq T t5 t4).(ty3 g c2 t4 (THead (Bind b) u t3))
                            case pr0_comp u1:T u2:T H6:pr0 u1 u2 t5:T t6:T H7:pr0 t5 t6 k:K 
                               the thesis becomes 
                                     H8:eq T (THead k u1 t5) (THead (Bind b) u t2)
                                       .H9:(eq T (THead k u2 t6) t4).(ty3 g c2 t4 (THead (Bind b) u t3))
                                suppose H8eq T (THead k u1 t5) (THead (Bind b) u t2)
                                suppose H9eq T (THead k u2 t6) t4
                                  (H10
                                     by (f_equal . . . . . H8)
                                     we proved 
                                        eq
                                          T
                                          <λ:T.T> CASE THead k u1 t5 OF TSort t5 | TLRef t5 | THead   t7t7
                                          <λ:T.T> CASE THead (Bind b) u t2 OF TSort t5 | TLRef t5 | THead   t7t7

                                        eq
                                          T
                                          λe:T.<λ:T.T> CASE e OF TSort t5 | TLRef t5 | THead   t7t7 (THead k u1 t5)
                                          λe:T.<λ:T.T> CASE e OF TSort t5 | TLRef t5 | THead   t7t7
                                            THead (Bind b) u t2
                                  end of H10
                                  (h1
                                     (H11
                                        by (f_equal . . . . . H8)
                                        we proved 
                                           eq
                                             T
                                             <λ:T.T> CASE THead k u1 t5 OF TSort u1 | TLRef u1 | THead  t7 t7
                                             <λ:T.T> CASE THead (Bind b) u t2 OF TSort u1 | TLRef u1 | THead  t7 t7

                                           eq
                                             T
                                             λe:T.<λ:T.T> CASE e OF TSort u1 | TLRef u1 | THead  t7 t7 (THead k u1 t5)
                                             λe:T.<λ:T.T> CASE e OF TSort u1 | TLRef u1 | THead  t7 t7
                                               THead (Bind b) u t2
                                     end of H11
                                     (h1
                                        (H12
                                           by (f_equal . . . . . H8)
                                           we proved 
                                              eq
                                                K
                                                <λ:T.K> CASE THead k u1 t5 OF TSort k | TLRef k | THead k0  k0
                                                <λ:T.K> CASE THead (Bind b) u t2 OF TSort k | TLRef k | THead k0  k0

                                              eq
                                                K
                                                λe:T.<λ:T.K> CASE e OF TSort k | TLRef k | THead k0  k0 (THead k u1 t5)
                                                λe:T.<λ:T.K> CASE e OF TSort k | TLRef k | THead k0  k0
                                                  THead (Bind b) u t2
                                        end of H12
                                        consider H12
                                        we proved 
                                           eq
                                             K
                                             <λ:T.K> CASE THead k u1 t5 OF TSort k | TLRef k | THead k0  k0
                                             <λ:T.K> CASE THead (Bind b) u t2 OF TSort k | TLRef k | THead k0  k0
                                        that is equivalent to eq K k (Bind b)
                                        by (sym_eq . . . previous)
                                        we proved eq K (Bind b) k
                                        we proceed by induction on the previous result to prove 
                                           eq T u1 u
                                             (eq T t5 t2
                                                  (eq T (THead k u2 t6) t4
                                                       (pr0 u1 u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3))))
                                           case refl_equal : 
                                              the thesis becomes 
                                              eq T u1 u
                                                (eq T t5 t2
                                                     (eq T (THead (Bind b) u2 t6) t4
                                                          (pr0 u1 u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3))))
                                                 suppose H13eq T u1 u
                                                    by (sym_eq . . . H13)
                                                    we proved eq T u u1
                                                    we proceed by induction on the previous result to prove 
                                                       eq T t5 t2
                                                         (eq T (THead (Bind b) u2 t6) t4
                                                              (pr0 u1 u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3)))
                                                       case refl_equal : 
                                                          the thesis becomes 
                                                          eq T t5 t2
                                                            (eq T (THead (Bind b) u2 t6) t4
                                                                 (pr0 u u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3)))
                                                             suppose H14eq T t5 t2
                                                                by (sym_eq . . . H14)
                                                                we proved eq T t2 t5
                                                                we proceed by induction on the previous result to prove 
                                                                   eq T (THead (Bind b) u2 t6) t4
                                                                     (pr0 u u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3))
                                                                   case refl_equal : 
                                                                      the thesis becomes 
                                                                      eq T (THead (Bind b) u2 t6) t4
                                                                        (pr0 u u2)(pr0 t2 t6)(ty3 g c2 t4 (THead (Bind b) u t3))
                                                                         suppose H15eq T (THead (Bind b) u2 t6) t4
                                                                            we proceed by induction on H15 to prove (pr0 u u2)(pr0 t2 t6)(ty3 g c2 t4 (THead (Bind b) u t3))
                                                                               case refl_equal : 
                                                                                  the thesis becomes (pr0 u u2)(pr0 t2 t6)(ty3 g c2 (THead (Bind b) u2 t6) (THead (Bind b) u t3))
                                                                                      suppose H16pr0 u u2
                                                                                      suppose H17pr0 t2 t6
                                                                                        (h1
                                                                                           by (pr0_refl .)
                                                                                           we proved pr0 u u
                                                                                           by (wcpr0_comp . . H4 . . previous .)
wcpr0 (CHead c (Bind b) u) (CHead c2 (Bind b) u)
                                                                                        end of h1
                                                                                        (h2by (pr0_refl .) we proved pr0 t2 t2
                                                                                        by (H3 . h1 . h2)
                                                                                        we proved ty3 g (CHead c2 (Bind b) u) t2 t3
                                                                                        by (ty3_correct . . . . previous)
                                                                                        we proved ex T λt:T.ty3 g (CHead c2 (Bind b) u) t3 t
                                                                                        we proceed by induction on the previous result to prove ty3 g c2 (THead (Bind b) u2 t6) (THead (Bind b) u t3)
                                                                                           case ex_intro : x:T H18:ty3 g (CHead c2 (Bind b) u) t3 x 
                                                                                              the thesis becomes ty3 g c2 (THead (Bind b) u2 t6) (THead (Bind b) u t3)
                                                                                                 by (wcpr0_comp . . H4 . . H16 .)
                                                                                                 we proved wcpr0 (CHead c (Bind b) u) (CHead c2 (Bind b) u2)
                                                                                                 by (H3 . previous . H17)
                                                                                                 we proved ty3 g (CHead c2 (Bind b) u2) t6 t3
                                                                                                 by (ty3_correct . . . . previous)
                                                                                                 we proved ex T λt:T.ty3 g (CHead c2 (Bind b) u2) t3 t
                                                                                                 we proceed by induction on the previous result to prove ty3 g c2 (THead (Bind b) u2 t6) (THead (Bind b) u t3)
                                                                                                    case ex_intro : x0:T :ty3 g (CHead c2 (Bind b) u2) t3 x0 
                                                                                                       the thesis becomes ty3 g c2 (THead (Bind b) u2 t6) (THead (Bind b) u t3)
                                                                                                          (h1
                                                                                                             by (pr0_refl .)
                                                                                                             we proved pr0 u u
                                                                                                             by (H1 . H4 . previous)
                                                                                                             we proved ty3 g c2 u t0
                                                                                                             by (ty3_bind . . . . previous . . . H18)
ty3 g c2 (THead (Bind b) u t3) (THead (Bind b) u x)
                                                                                                          end of h1
                                                                                                          (h2
                                                                                                             (h1by (H1 . H4 . H16) we proved ty3 g c2 u2 t0
                                                                                                             (h2
                                                                                                                by (wcpr0_comp . . H4 . . H16 .)
                                                                                                                we proved wcpr0 (CHead c (Bind b) u) (CHead c2 (Bind b) u2)
                                                                                                                by (H3 . previous . H17)
ty3 g (CHead c2 (Bind b) u2) t6 t3
                                                                                                             end of h2
                                                                                                             by (ty3_bind . . . . h1 . . . h2)
ty3 g c2 (THead (Bind b) u2 t6) (THead (Bind b) u2 t3)
                                                                                                          end of h2
                                                                                                          (h3
                                                                                                             by (pr2_free . . . H16)
                                                                                                             we proved pr2 c2 u u2
                                                                                                             by (pr2_head_1 . . . previous . .)
                                                                                                             we proved pr2 c2 (THead (Bind b) u t3) (THead (Bind b) u2 t3)
                                                                                                             by (pc3_pr2_x . . . previous)
pc3 c2 (THead (Bind b) u2 t3) (THead (Bind b) u t3)
                                                                                                          end of h3
                                                                                                          by (ty3_conv . . . . h1 . . h2 h3)
ty3 g c2 (THead (Bind b) u2 t6) (THead (Bind b) u t3)
ty3 g c2 (THead (Bind b) u2 t6) (THead (Bind b) u t3)
                                                                                        we proved ty3 g c2 (THead (Bind b) u2 t6) (THead (Bind b) u t3)
(pr0 u u2)(pr0 t2 t6)(ty3 g c2 (THead (Bind b) u2 t6) (THead (Bind b) u t3))
                                                                            we proved (pr0 u u2)(pr0 t2 t6)(ty3 g c2 t4 (THead (Bind b) u t3))

                                                                            eq T (THead (Bind b) u2 t6) t4
                                                                              (pr0 u u2)(pr0 t2 t6)(ty3 g c2 t4 (THead (Bind b) u t3))
                                                                we proved 
                                                                   eq T (THead (Bind b) u2 t6) t4
                                                                     (pr0 u u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3))

                                                                eq T t5 t2
                                                                  (eq T (THead (Bind b) u2 t6) t4
                                                                       (pr0 u u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3)))
                                                    we proved 
                                                       eq T t5 t2
                                                         (eq T (THead (Bind b) u2 t6) t4
                                                              (pr0 u1 u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3)))

                                                    eq T u1 u
                                                      (eq T t5 t2
                                                           (eq T (THead (Bind b) u2 t6) t4
                                                                (pr0 u1 u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3))))

                                           eq T u1 u
                                             (eq T t5 t2
                                                  (eq T (THead k u2 t6) t4
                                                       (pr0 u1 u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3))))
                                     end of h1
                                     (h2
                                        consider H11
                                        we proved 
                                           eq
                                             T
                                             <λ:T.T> CASE THead k u1 t5 OF TSort u1 | TLRef u1 | THead  t7 t7
                                             <λ:T.T> CASE THead (Bind b) u t2 OF TSort u1 | TLRef u1 | THead  t7 t7
eq T u1 u
                                     end of h2
                                     by (h1 h2)

                                        eq T t5 t2
                                          (eq T (THead k u2 t6) t4
                                               (pr0 u1 u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3)))
                                  end of h1
                                  (h2
                                     consider H10
                                     we proved 
                                        eq
                                          T
                                          <λ:T.T> CASE THead k u1 t5 OF TSort t5 | TLRef t5 | THead   t7t7
                                          <λ:T.T> CASE THead (Bind b) u t2 OF TSort t5 | TLRef t5 | THead   t7t7
eq T t5 t2
                                  end of h2
                                  by (h1 h2)
                                  we proved 
                                     eq T (THead k u2 t6) t4
                                       (pr0 u1 u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3))
                                  by (previous H9 H6 H7)
                                  we proved ty3 g c2 t4 (THead (Bind b) u t3)

                                  H8:eq T (THead k u1 t5) (THead (Bind b) u t2)
                                    .H9:(eq T (THead k u2 t6) t4).(ty3 g c2 t4 (THead (Bind b) u t3))
                            case pr0_beta u0:T v1:T v2:T H6:pr0 v1 v2 t5:T t6:T H7:pr0 t5 t6 
                               the thesis becomes 
                                     H8:eq
                                                T
                                                THead (Flat Appl) v1 (THead (Bind Abst) u0 t5)
                                                THead (Bind b) u t2
                                       .H9:(eq T (THead (Bind Abbr) v2 t6) t4).(ty3 g c2 t4 (THead (Bind b) u t3))
                                suppose H8
                                   eq
                                     T
                                     THead (Flat Appl) v1 (THead (Bind Abst) u0 t5)
                                     THead (Bind b) u t2
                                suppose H9eq T (THead (Bind Abbr) v2 t6) t4
                                  (H10
                                     we proceed by induction on H8 to prove 
                                        <λ:T.Prop>
                                          CASE THead (Bind b) u t2 OF
                                            TSort False
                                          | TLRef False
                                          | THead k  <λ:K.Prop> CASE k OF Bind False | Flat True
                                        case refl_equal : 
                                           the thesis becomes 
                                           <λ:T.Prop>
                                             CASE THead (Flat Appl) v1 (THead (Bind Abst) u0 t5) OF
                                               TSort False
                                             | TLRef False
                                             | THead k  <λ:K.Prop> CASE k OF Bind False | Flat True
                                              consider I
                                              we proved True

                                                 <λ:T.Prop>
                                                   CASE THead (Flat Appl) v1 (THead (Bind Abst) u0 t5) OF
                                                     TSort False
                                                   | TLRef False
                                                   | THead k  <λ:K.Prop> CASE k OF Bind False | Flat True

                                        <λ:T.Prop>
                                          CASE THead (Bind b) u t2 OF
                                            TSort False
                                          | TLRef False
                                          | THead k  <λ:K.Prop> CASE k OF Bind False | Flat True
                                  end of H10
                                  consider H10
                                  we proved 
                                     <λ:T.Prop>
                                       CASE THead (Bind b) u t2 OF
                                         TSort False
                                       | TLRef False
                                       | THead k  <λ:K.Prop> CASE k OF Bind False | Flat True
                                  that is equivalent to False
                                  we proceed by induction on the previous result to prove 
                                     eq T (THead (Bind Abbr) v2 t6) t4
                                       (pr0 v1 v2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3))
                                  we proved 
                                     eq T (THead (Bind Abbr) v2 t6) t4
                                       (pr0 v1 v2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3))
                                  by (previous H9 H6 H7)
                                  we proved ty3 g c2 t4 (THead (Bind b) u t3)

                                  H8:eq
                                             T
                                             THead (Flat Appl) v1 (THead (Bind Abst) u0 t5)
                                             THead (Bind b) u t2
                                    .H9:(eq T (THead (Bind Abbr) v2 t6) t4).(ty3 g c2 t4 (THead (Bind b) u t3))
                            case pr0_upsilon b0:B H6:not (eq B b0 Abst) v1:T v2:T H7:pr0 v1 v2 u1:T u2:T H8:pr0 u1 u2 t5:T t6:T H9:pr0 t5 t6 
                               the thesis becomes 
                                     H10:eq
                                                  T
                                                  THead (Flat Appl) v1 (THead (Bind b0) u1 t5)
                                                  THead (Bind b) u t2
                                       .H11:eq T (THead (Bind b0) u2 (THead (Flat Appl) (lift (S OO v2) t6)) t4
                                         .ty3 g c2 t4 (THead (Bind b) u t3)
                                suppose H10
                                   eq
                                     T
                                     THead (Flat Appl) v1 (THead (Bind b0) u1 t5)
                                     THead (Bind b) u t2
                                suppose H11eq T (THead (Bind b0) u2 (THead (Flat Appl) (lift (S OO v2) t6)) t4
                                  (H12
                                     we proceed by induction on H10 to prove 
                                        <λ:T.Prop>
                                          CASE THead (Bind b) u t2 OF
                                            TSort False
                                          | TLRef False
                                          | THead k  <λ:K.Prop> CASE k OF Bind False | Flat True
                                        case refl_equal : 
                                           the thesis becomes 
                                           <λ:T.Prop>
                                             CASE THead (Flat Appl) v1 (THead (Bind b0) u1 t5) OF
                                               TSort False
                                             | TLRef False
                                             | THead k  <λ:K.Prop> CASE k OF Bind False | Flat True
                                              consider I
                                              we proved True

                                                 <λ:T.Prop>
                                                   CASE THead (Flat Appl) v1 (THead (Bind b0) u1 t5) OF
                                                     TSort False
                                                   | TLRef False
                                                   | THead k  <λ:K.Prop> CASE k OF Bind False | Flat True

                                        <λ:T.Prop>
                                          CASE THead (Bind b) u t2 OF
                                            TSort False
                                          | TLRef False
                                          | THead k  <λ:K.Prop> CASE k OF Bind False | Flat True
                                  end of H12
                                  consider H12
                                  we proved 
                                     <λ:T.Prop>
                                       CASE THead (Bind b) u t2 OF
                                         TSort False
                                       | TLRef False
                                       | THead k  <λ:K.Prop> CASE k OF Bind False | Flat True
                                  that is equivalent to False
                                  we proceed by induction on the previous result to prove 
                                     eq T (THead (Bind b0) u2 (THead (Flat Appl) (lift (S OO v2) t6)) t4
                                       (not (eq B b0 Abst)
                                            (pr0 v1 v2)(pr0 u1 u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3)))
                                  we proved 
                                     eq T (THead (Bind b0) u2 (THead (Flat Appl) (lift (S OO v2) t6)) t4
                                       (not (eq B b0 Abst)
                                            (pr0 v1 v2)(pr0 u1 u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3)))
                                  by (previous H11 H6 H7 H8 H9)
                                  we proved ty3 g c2 t4 (THead (Bind b) u t3)

                                  H10:eq
                                               T
                                               THead (Flat Appl) v1 (THead (Bind b0) u1 t5)
                                               THead (Bind b) u t2
                                    .H11:eq T (THead (Bind b0) u2 (THead (Flat Appl) (lift (S OO v2) t6)) t4
                                      .ty3 g c2 t4 (THead (Bind b) u t3)
                            case pr0_delta u1:T u2:T H6:pr0 u1 u2 t5:T t6:T H7:pr0 t5 t6 w:T H8:subst0 O u2 t6 w 
                               the thesis becomes 
                                     H9:eq T (THead (Bind Abbr) u1 t5) (THead (Bind b) u t2)
                                       .H10:(eq T (THead (Bind Abbr) u2 w) t4).(ty3 g c2 t4 (THead (Bind b) u t3))
                                suppose H9eq T (THead (Bind Abbr) u1 t5) (THead (Bind b) u t2)
                                suppose H10eq T (THead (Bind Abbr) u2 w) t4
                                  (H11
                                     by (f_equal . . . . . H9)
                                     we proved 
                                        eq
                                          T
                                          <λ:T.T> CASE THead (Bind Abbr) u1 t5 OF TSort t5 | TLRef t5 | THead   t7t7
                                          <λ:T.T> CASE THead (Bind b) u t2 OF TSort t5 | TLRef t5 | THead   t7t7

                                        eq
                                          T
                                          λe:T.<λ:T.T> CASE e OF TSort t5 | TLRef t5 | THead   t7t7
                                            THead (Bind Abbr) u1 t5
                                          λe:T.<λ:T.T> CASE e OF TSort t5 | TLRef t5 | THead   t7t7
                                            THead (Bind b) u t2
                                  end of H11
                                  (h1
                                     (H12
                                        by (f_equal . . . . . H9)
                                        we proved 
                                           eq
                                             T
                                             <λ:T.T> CASE THead (Bind Abbr) u1 t5 OF TSort u1 | TLRef u1 | THead  t7 t7
                                             <λ:T.T> CASE THead (Bind b) u t2 OF TSort u1 | TLRef u1 | THead  t7 t7

                                           eq
                                             T
                                             λe:T.<λ:T.T> CASE e OF TSort u1 | TLRef u1 | THead  t7 t7
                                               THead (Bind Abbr) u1 t5
                                             λe:T.<λ:T.T> CASE e OF TSort u1 | TLRef u1 | THead  t7 t7
                                               THead (Bind b) u t2
                                     end of H12
                                     (h1
                                        (H13
                                           by (f_equal . . . . . H9)
                                           we proved 
                                              eq
                                                B
                                                <λ:T.B>
                                                  CASE THead (Bind Abbr) u1 t5 OF
                                                    TSort Abbr
                                                  | TLRef Abbr
                                                  | THead k  <λ:K.B> CASE k OF Bind b0b0 | Flat Abbr
                                                <λ:T.B>
                                                  CASE THead (Bind b) u t2 OF
                                                    TSort Abbr
                                                  | TLRef Abbr
                                                  | THead k  <λ:K.B> CASE k OF Bind b0b0 | Flat Abbr

                                              eq
                                                B
                                                λe:T
                                                    .<λ:T.B>
                                                      CASE e OF
                                                        TSort Abbr
                                                      | TLRef Abbr
                                                      | THead k  <λ:K.B> CASE k OF Bind b0b0 | Flat Abbr
                                                  THead (Bind Abbr) u1 t5
                                                λe:T
                                                    .<λ:T.B>
                                                      CASE e OF
                                                        TSort Abbr
                                                      | TLRef Abbr
                                                      | THead k  <λ:K.B> CASE k OF Bind b0b0 | Flat Abbr
                                                  THead (Bind b) u t2
                                        end of H13
                                        consider H13
                                        we proved 
                                           eq
                                             B
                                             <λ:T.B>
                                               CASE THead (Bind Abbr) u1 t5 OF
                                                 TSort Abbr
                                               | TLRef Abbr
                                               | THead k  <λ:K.B> CASE k OF Bind b0b0 | Flat Abbr
                                             <λ:T.B>
                                               CASE THead (Bind b) u t2 OF
                                                 TSort Abbr
                                               | TLRef Abbr
                                               | THead k  <λ:K.B> CASE k OF Bind b0b0 | Flat Abbr
                                        that is equivalent to eq B Abbr b
                                        we proceed by induction on the previous result to prove 
                                           eq T u1 u
                                             (eq T t5 t2
                                                  (eq T (THead (Bind Abbr) u2 w) t4
                                                       (pr0 u1 u2)(pr0 t5 t6)(subst0 O u2 t6 w)(ty3 g c2 t4 (THead (Bind b) u t3))))
                                           case refl_equal : 
                                              the thesis becomes 
                                              eq T u1 u
                                                (eq T t5 t2
                                                     (eq T (THead (Bind Abbr) u2 w) t4
                                                          (pr0 u1 u2)(pr0 t5 t6)(subst0 O u2 t6 w)(ty3 g c2 t4 (THead (Bind Abbr) u t3))))
                                                 suppose H14eq T u1 u
                                                    by (sym_eq . . . H14)
                                                    we proved eq T u u1
                                                    we proceed by induction on the previous result to prove 
                                                       eq T t5 t2
                                                         (eq T (THead (Bind Abbr) u2 w) t4
                                                              (pr0 u1 u2)(pr0 t5 t6)(subst0 O u2 t6 w)(ty3 g c2 t4 (THead (Bind Abbr) u t3)))
                                                       case refl_equal : 
                                                          the thesis becomes 
                                                          eq T t5 t2
                                                            (eq T (THead (Bind Abbr) u2 w) t4
                                                                 (pr0 u u2)(pr0 t5 t6)(subst0 O u2 t6 w)(ty3 g c2 t4 (THead (Bind Abbr) u t3)))
                                                             suppose H15eq T t5 t2
                                                                by (sym_eq . . . H15)
                                                                we proved eq T t2 t5
                                                                we proceed by induction on the previous result to prove 
                                                                   eq T (THead (Bind Abbr) u2 w) t4
                                                                     (pr0 u u2)(pr0 t5 t6)(subst0 O u2 t6 w)(ty3 g c2 t4 (THead (Bind Abbr) u t3))
                                                                   case refl_equal : 
                                                                      the thesis becomes 
                                                                      eq T (THead (Bind Abbr) u2 w) t4
                                                                        (pr0 u u2)(pr0 t2 t6)(subst0 O u2 t6 w)(ty3 g c2 t4 (THead (Bind Abbr) u t3))
                                                                         suppose H16eq T (THead (Bind Abbr) u2 w) t4
                                                                            we proceed by induction on H16 to prove (pr0 u u2)(pr0 t2 t6)(subst0 O u2 t6 w)(ty3 g c2 t4 (THead (Bind Abbr) u t3))
                                                                               case refl_equal : 
                                                                                  the thesis becomes 
                                                                                  pr0 u u2
                                                                                    (pr0 t2 t6
                                                                                         (subst0 O u2 t6 w)(ty3 g c2 (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u t3)))
                                                                                      suppose H17pr0 u u2
                                                                                      suppose H18pr0 t2 t6
                                                                                      suppose H19subst0 O u2 t6 w
                                                                                        (H20
                                                                                           consider H13
                                                                                           we proved 
                                                                                              eq
                                                                                                B
                                                                                                <λ:T.B>
                                                                                                  CASE THead (Bind Abbr) u1 t5 OF
                                                                                                    TSort Abbr
                                                                                                  | TLRef Abbr
                                                                                                  | THead k  <λ:K.B> CASE k OF Bind b0b0 | Flat Abbr
                                                                                                <λ:T.B>
                                                                                                  CASE THead (Bind b) u t2 OF
                                                                                                    TSort Abbr
                                                                                                  | TLRef Abbr
                                                                                                  | THead k  <λ:K.B> CASE k OF Bind b0b0 | Flat Abbr
                                                                                           that is equivalent to eq B Abbr b
                                                                                           by (eq_ind_r . . . H3 . previous)
c3:C.(wcpr0 (CHead c (Bind Abbr) u) c3)t7:T.(pr0 t2 t7)(ty3 g c3 t7 t3)
                                                                                        end of H20
                                                                                        (h1
                                                                                           by (pr0_refl .)
                                                                                           we proved pr0 u u
                                                                                           by (wcpr0_comp . . H4 . . previous .)
wcpr0 (CHead c (Bind Abbr) u) (CHead c2 (Bind Abbr) u)
                                                                                        end of h1
                                                                                        (h2by (pr0_refl .) we proved pr0 t2 t2
                                                                                        by (H20 . h1 . h2)
                                                                                        we proved ty3 g (CHead c2 (Bind Abbr) u) t2 t3
                                                                                        by (ty3_correct . . . . previous)
                                                                                        we proved ex T λt:T.ty3 g (CHead c2 (Bind Abbr) u) t3 t
                                                                                        we proceed by induction on the previous result to prove ty3 g c2 (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u t3)
                                                                                           case ex_intro : x:T H22:ty3 g (CHead c2 (Bind Abbr) u) t3 x 
                                                                                              the thesis becomes ty3 g c2 (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u t3)
                                                                                                 by (wcpr0_comp . . H4 . . H17 .)
                                                                                                 we proved wcpr0 (CHead c (Bind Abbr) u) (CHead c2 (Bind Abbr) u2)
                                                                                                 by (H20 . previous . H18)
                                                                                                 we proved ty3 g (CHead c2 (Bind Abbr) u2) t6 t3
                                                                                                 by (ty3_correct . . . . previous)
                                                                                                 we proved ex T λt:T.ty3 g (CHead c2 (Bind Abbr) u2) t3 t
                                                                                                 we proceed by induction on the previous result to prove ty3 g c2 (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u t3)
                                                                                                    case ex_intro : x0:T :ty3 g (CHead c2 (Bind Abbr) u2) t3 x0 
                                                                                                       the thesis becomes ty3 g c2 (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u t3)
                                                                                                          (h1
                                                                                                             by (pr0_refl .)
                                                                                                             we proved pr0 u u
                                                                                                             by (H1 . H4 . previous)
                                                                                                             we proved ty3 g c2 u t0
                                                                                                             by (ty3_bind . . . . previous . . . H22)
ty3 g c2 (THead (Bind Abbr) u t3) (THead (Bind Abbr) u x)
                                                                                                          end of h1
                                                                                                          (h2
                                                                                                             (h1by (H1 . H4 . H17) we proved ty3 g c2 u2 t0
                                                                                                             (h2
                                                                                                                (h1
                                                                                                                   by (wcpr0_comp . . H4 . . H17 .)
                                                                                                                   we proved wcpr0 (CHead c (Bind Abbr) u) (CHead c2 (Bind Abbr) u2)
                                                                                                                   by (H20 . previous . H18)
ty3 g (CHead c2 (Bind Abbr) u2) t6 t3
                                                                                                                end of h1
                                                                                                                (h2
                                                                                                                   by (getl_refl . . .)
getl O (CHead c2 (Bind Abbr) u2) (CHead c2 (Bind Abbr) u2)
                                                                                                                end of h2
                                                                                                                by (ty3_subst0 . . . . h1 . . . h2 . H19)
ty3 g (CHead c2 (Bind Abbr) u2) w t3
                                                                                                             end of h2
                                                                                                             by (ty3_bind . . . . h1 . . . h2)
ty3 g c2 (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u2 t3)
                                                                                                          end of h2
                                                                                                          (h3
                                                                                                             by (pr2_free . . . H17)
                                                                                                             we proved pr2 c2 u u2
                                                                                                             by (pr2_head_1 . . . previous . .)
                                                                                                             we proved pr2 c2 (THead (Bind Abbr) u t3) (THead (Bind Abbr) u2 t3)
                                                                                                             by (pc3_pr2_x . . . previous)
pc3 c2 (THead (Bind Abbr) u2 t3) (THead (Bind Abbr) u t3)
                                                                                                          end of h3
                                                                                                          by (ty3_conv . . . . h1 . . h2 h3)
ty3 g c2 (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u t3)
ty3 g c2 (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u t3)
                                                                                        we proved ty3 g c2 (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u t3)

                                                                                        pr0 u u2
                                                                                          (pr0 t2 t6
                                                                                               (subst0 O u2 t6 w)(ty3 g c2 (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u t3)))
                                                                            we proved (pr0 u u2)(pr0 t2 t6)(subst0 O u2 t6 w)(ty3 g c2 t4 (THead (Bind Abbr) u t3))

                                                                            eq T (THead (Bind Abbr) u2 w) t4
                                                                              (pr0 u u2)(pr0 t2 t6)(subst0 O u2 t6 w)(ty3 g c2 t4 (THead (Bind Abbr) u t3))
                                                                we proved 
                                                                   eq T (THead (Bind Abbr) u2 w) t4
                                                                     (pr0 u u2)(pr0 t5 t6)(subst0 O u2 t6 w)(ty3 g c2 t4 (THead (Bind Abbr) u t3))

                                                                eq T t5 t2
                                                                  (eq T (THead (Bind Abbr) u2 w) t4
                                                                       (pr0 u u2)(pr0 t5 t6)(subst0 O u2 t6 w)(ty3 g c2 t4 (THead (Bind Abbr) u t3)))
                                                    we proved 
                                                       eq T t5 t2
                                                         (eq T (THead (Bind Abbr) u2 w) t4
                                                              (pr0 u1 u2)(pr0 t5 t6)(subst0 O u2 t6 w)(ty3 g c2 t4 (THead (Bind Abbr) u t3)))

                                                    eq T u1 u
                                                      (eq T t5 t2
                                                           (eq T (THead (Bind Abbr) u2 w) t4
                                                                (pr0 u1 u2)(pr0 t5 t6)(subst0 O u2 t6 w)(ty3 g c2 t4 (THead (Bind Abbr) u t3))))

                                           eq T u1 u
                                             (eq T t5 t2
                                                  (eq T (THead (Bind Abbr) u2 w) t4
                                                       (pr0 u1 u2)(pr0 t5 t6)(subst0 O u2 t6 w)(ty3 g c2 t4 (THead (Bind b) u t3))))
                                     end of h1
                                     (h2
                                        consider H12
                                        we proved 
                                           eq
                                             T
                                             <λ:T.T> CASE THead (Bind Abbr) u1 t5 OF TSort u1 | TLRef u1 | THead  t7 t7
                                             <λ:T.T> CASE THead (Bind b) u t2 OF TSort u1 | TLRef u1 | THead  t7 t7
eq T u1 u
                                     end of h2
                                     by (h1 h2)

                                        eq T t5 t2
                                          (eq T (THead (Bind Abbr) u2 w) t4
                                               (pr0 u1 u2)(pr0 t5 t6)(subst0 O u2 t6 w)(ty3 g c2 t4 (THead (Bind b) u t3)))
                                  end of h1
                                  (h2
                                     consider H11
                                     we proved 
                                        eq
                                          T
                                          <λ:T.T> CASE THead (Bind Abbr) u1 t5 OF TSort t5 | TLRef t5 | THead   t7t7
                                          <λ:T.T> CASE THead (Bind b) u t2 OF TSort t5 | TLRef t5 | THead   t7t7
eq T t5 t2
                                  end of h2
                                  by (h1 h2)
                                  we proved 
                                     eq T (THead (Bind Abbr) u2 w) t4
                                       (pr0 u1 u2)(pr0 t5 t6)(subst0 O u2 t6 w)(ty3 g c2 t4 (THead (Bind b) u t3))
                                  by (previous H10 H6 H7 H8)
                                  we proved ty3 g c2 t4 (THead (Bind b) u t3)

                                  H9:eq T (THead (Bind Abbr) u1 t5) (THead (Bind b) u t2)
                                    .H10:(eq T (THead (Bind Abbr) u2 w) t4).(ty3 g c2 t4 (THead (Bind b) u t3))
                            case pr0_zeta b0:B H6:not (eq B b0 Abst) t5:T t6:T H7:pr0 t5 t6 u0:T 
                               the thesis becomes 
                                     H8:eq T (THead (Bind b0) u0 (lift (S OO t5)) (THead (Bind b) u t2)
                                       .H9:(eq T t6 t4).(ty3 g c2 t4 (THead (Bind b) u t3))
                                suppose H8eq T (THead (Bind b0) u0 (lift (S OO t5)) (THead (Bind b) u t2)
                                suppose H9eq T t6 t4
                                  (H10
                                     by (f_equal . . . . . H8)
                                     we proved 
                                        eq
                                          T
                                          <λ:T.T>
                                            CASE THead (Bind b0) u0 (lift (S OO t5) OF
                                              TSort 
                                                  FIXlref_map{
                                                      lref_map:(natnat)natTT
                                                      :=λf:natnat
                                                        .λd:nat
                                                          .λt7:T
                                                            .<λt8:T.T>
                                                              CASE t7 OF
                                                                TSort nTSort n
                                                              | TLRef iTLRef <λb1:bool.nat> CASE blt i d OF truei | falsef i
                                                              | THead k u1 t8THead k (lref_map f d u1) (lref_map f (s k d) t8)
                                                      }
                                                    λx:nat.plus x (S O)
                                                    O
                                                    t5
                                            | TLRef 
                                                  FIXlref_map{
                                                      lref_map:(natnat)natTT
                                                      :=λf:natnat
                                                        .λd:nat
                                                          .λt7:T
                                                            .<λt8:T.T>
                                                              CASE t7 OF
                                                                TSort nTSort n
                                                              | TLRef iTLRef <λb1:bool.nat> CASE blt i d OF truei | falsef i
                                                              | THead k u1 t8THead k (lref_map f d u1) (lref_map f (s k d) t8)
                                                      }
                                                    λx:nat.plus x (S O)
                                                    O
                                                    t5
                                            | THead   t7t7
                                          <λ:T.T>
                                            CASE THead (Bind b) u t2 OF
                                              TSort 
                                                  FIXlref_map{
                                                      lref_map:(natnat)natTT
                                                      :=λf:natnat
                                                        .λd:nat
                                                          .λt7:T
                                                            .<λt8:T.T>
                                                              CASE t7 OF
                                                                TSort nTSort n
                                                              | TLRef iTLRef <λb1:bool.nat> CASE blt i d OF truei | falsef i
                                                              | THead k u1 t8THead k (lref_map f d u1) (lref_map f (s k d) t8)
                                                      }
                                                    λx:nat.plus x (S O)
                                                    O
                                                    t5
                                            | TLRef 
                                                  FIXlref_map{
                                                      lref_map:(natnat)natTT
                                                      :=λf:natnat
                                                        .λd:nat
                                                          .λt7:T
                                                            .<λt8:T.T>
                                                              CASE t7 OF
                                                                TSort nTSort n
                                                              | TLRef iTLRef <λb1:bool.nat> CASE blt i d OF truei | falsef i
                                                              | THead k u1 t8THead k (lref_map f d u1) (lref_map f (s k d) t8)
                                                      }
                                                    λx:nat.plus x (S O)
                                                    O
                                                    t5
                                            | THead   t7t7

                                        eq
                                          T
                                          λe:T
                                              .<λ:T.T>
                                                CASE e OF
                                                  TSort 
                                                      FIXlref_map{
                                                          lref_map:(natnat)natTT
                                                          :=λf:natnat
                                                            .λd:nat
                                                              .λt7:T
                                                                .<λt8:T.T>
                                                                  CASE t7 OF
                                                                    TSort nTSort n
                                                                  | TLRef iTLRef <λb1:bool.nat> CASE blt i d OF truei | falsef i
                                                                  | THead k u1 t8THead k (lref_map f d u1) (lref_map f (s k d) t8)
                                                          }
                                                        λx:nat.plus x (S O)
                                                        O
                                                        t5
                                                | TLRef 
                                                      FIXlref_map{
                                                          lref_map:(natnat)natTT
                                                          :=λf:natnat
                                                            .λd:nat
                                                              .λt7:T
                                                                .<λt8:T.T>
                                                                  CASE t7 OF
                                                                    TSort nTSort n
                                                                  | TLRef iTLRef <λb1:bool.nat> CASE blt i d OF truei | falsef i
                                                                  | THead k u1 t8THead k (lref_map f d u1) (lref_map f (s k d) t8)
                                                          }
                                                        λx:nat.plus x (S O)
                                                        O
                                                        t5
                                                | THead   t7t7
                                            THead (Bind b0) u0 (lift (S OO t5)
                                          λe:T
                                              .<λ:T.T>
                                                CASE e OF
                                                  TSort 
                                                      FIXlref_map{
                                                          lref_map:(natnat)natTT
                                                          :=λf:natnat
                                                            .λd:nat
                                                              .λt7:T
                                                                .<λt8:T.T>
                                                                  CASE t7 OF
                                                                    TSort nTSort n
                                                                  | TLRef iTLRef <λb1:bool.nat> CASE blt i d OF truei | falsef i
                                                                  | THead k u1 t8THead k (lref_map f d u1) (lref_map f (s k d) t8)
                                                          }
                                                        λx:nat.plus x (S O)
                                                        O
                                                        t5
                                                | TLRef 
                                                      FIXlref_map{
                                                          lref_map:(natnat)natTT
                                                          :=λf:natnat
                                                            .λd:nat
                                                              .λt7:T
                                                                .<λt8:T.T>
                                                                  CASE t7 OF
                                                                    TSort nTSort n
                                                                  | TLRef iTLRef <λb1:bool.nat> CASE blt i d OF truei | falsef i
                                                                  | THead k u1 t8THead k (lref_map f d u1) (lref_map f (s k d) t8)
                                                          }
                                                        λx:nat.plus x (S O)
                                                        O
                                                        t5
                                                | THead   t7t7
                                            THead (Bind b) u t2
                                  end of H10
                                  (h1
                                     (H11
                                        by (f_equal . . . . . H8)
                                        we proved 
                                           eq
                                             T
                                             <λ:T.T>
                                               CASE THead (Bind b0) u0 (lift (S OO t5) OF
                                                 TSort u0
                                               | TLRef u0
                                               | THead  t7 t7
                                             <λ:T.T> CASE THead (Bind b) u t2 OF TSort u0 | TLRef u0 | THead  t7 t7

                                           eq
                                             T
                                             λe:T.<λ:T.T> CASE e OF TSort u0 | TLRef u0 | THead  t7 t7
                                               THead (Bind b0) u0 (lift (S OO t5)
                                             λe:T.<λ:T.T> CASE e OF TSort u0 | TLRef u0 | THead  t7 t7
                                               THead (Bind b) u t2
                                     end of H11
                                     (h1
                                        (H12
                                           by (f_equal . . . . . H8)
                                           we proved 
                                              eq
                                                B
                                                <λ:T.B>
                                                  CASE THead (Bind b0) u0 (lift (S OO t5) OF
                                                    TSort b0
                                                  | TLRef b0
                                                  | THead k  <λ:K.B> CASE k OF Bind b1b1 | Flat b0
                                                <λ:T.B>
                                                  CASE THead (Bind b) u t2 OF
                                                    TSort b0
                                                  | TLRef b0
                                                  | THead k  <λ:K.B> CASE k OF Bind b1b1 | Flat b0

                                              eq
                                                B
                                                λe:T
                                                    .<λ:T.B>
                                                      CASE e OF
                                                        TSort b0
                                                      | TLRef b0
                                                      | THead k  <λ:K.B> CASE k OF Bind b1b1 | Flat b0
                                                  THead (Bind b0) u0 (lift (S OO t5)
                                                λe:T
                                                    .<λ:T.B>
                                                      CASE e OF
                                                        TSort b0
                                                      | TLRef b0
                                                      | THead k  <λ:K.B> CASE k OF Bind b1b1 | Flat b0
                                                  THead (Bind b) u t2
                                        end of H12
                                        consider H12
                                        we proved 
                                           eq
                                             B
                                             <λ:T.B>
                                               CASE THead (Bind b0) u0 (lift (S OO t5) OF
                                                 TSort b0
                                               | TLRef b0
                                               | THead k  <λ:K.B> CASE k OF Bind b1b1 | Flat b0
                                             <λ:T.B>
                                               CASE THead (Bind b) u t2 OF
                                                 TSort b0
                                               | TLRef b0
                                               | THead k  <λ:K.B> CASE k OF Bind b1b1 | Flat b0
                                        that is equivalent to eq B b0 b
                                        by (sym_eq . . . previous)
                                        we proved eq B b b0
                                        we proceed by induction on the previous result to prove 
                                           eq T u0 u
                                             (eq T (lift (S OO t5) t2
                                                  (eq T t6 t4
                                                       (not (eq B b0 Abst))(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3))))
                                           case refl_equal : 
                                              the thesis becomes 
                                              eq T u0 u
                                                (eq T (lift (S OO t5) t2
                                                     (eq T t6 t4
                                                          (not (eq B b Abst))(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3))))
                                                 suppose H13eq T u0 u
                                                    by (sym_eq . . . H13)
                                                    we proved eq T u u0
                                                    we proceed by induction on the previous result to prove 
                                                       eq T (lift (S OO t5) t2
                                                         (eq T t6 t4
                                                              (not (eq B b Abst))(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3)))
                                                       case refl_equal : 
                                                          the thesis becomes 
                                                          eq T (lift (S OO t5) t2
                                                            (eq T t6 t4
                                                                 (not (eq B b Abst))(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3)))
                                                             suppose H14eq T (lift (S OO t5) t2
                                                                we proceed by induction on H14 to prove 
                                                                   eq T t6 t4
                                                                     (not (eq B b Abst))(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3))
                                                                   case refl_equal : 
                                                                      the thesis becomes 
                                                                      eq T t6 t4
                                                                        (not (eq B b Abst))(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3))
                                                                         suppose H15eq T t6 t4
                                                                            by (sym_eq . . . H15)
                                                                            we proved eq T t4 t6
                                                                            we proceed by induction on the previous result to prove (not (eq B b Abst))(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3))
                                                                               case refl_equal : 
                                                                                  the thesis becomes (not (eq B b Abst))(pr0 t5 t4)(ty3 g c2 t4 (THead (Bind b) u t3))
                                                                                      suppose H16not (eq B b Abst)
                                                                                      suppose H17pr0 t5 t4
                                                                                        (H18
                                                                                           by (eq_ind_r . . . H3 . H14)
c3:C.(wcpr0 (CHead c (Bind b) u) c3)t8:T.(pr0 (lift (S OO t5) t8)(ty3 g c3 t8 t3)
                                                                                        end of H18
                                                                                        (h1
                                                                                           by (pr0_refl .)
                                                                                           we proved pr0 u u
                                                                                           by (wcpr0_comp . . H4 . . previous .)
wcpr0 (CHead c (Bind b) u) (CHead c2 (Bind b) u)
                                                                                        end of h1
                                                                                        (h2
                                                                                           by (pr0_lift . . H17 . .)
pr0 (lift (S OO t5) (lift (S OO t4)
                                                                                        end of h2
                                                                                        by (H18 . h1 . h2)
                                                                                        we proved ty3 g (CHead c2 (Bind b) u) (lift (S OO t4) t3
                                                                                        by (ty3_correct . . . . previous)
                                                                                        we proved ex T λt:T.ty3 g (CHead c2 (Bind b) u) t3 t
                                                                                        we proceed by induction on the previous result to prove ty3 g c2 t4 (THead (Bind b) u t3)
                                                                                           case ex_intro : x:T H20:ty3 g (CHead c2 (Bind b) u) t3 x 
                                                                                              the thesis becomes ty3 g c2 t4 (THead (Bind b) u t3)
                                                                                                 (h1
                                                                                                    by (pr0_refl .)
                                                                                                    we proved pr0 u u
                                                                                                    by (wcpr0_comp . . H4 . . previous .)
wcpr0 (CHead c (Bind b) u) (CHead c2 (Bind b) u)
                                                                                                 end of h1
                                                                                                 (h2
                                                                                                    by (pr0_lift . . H17 . .)
pr0 (lift (S OO t5) (lift (S OO t4)
                                                                                                 end of h2
                                                                                                 by (H18 . h1 . h2)
                                                                                                 we proved ty3 g (CHead c2 (Bind b) u) (lift (S OO t4) t3
                                                                                                  suppose H21not (eq B Abbr Abst)
                                                                                                  suppose H22ty3 g (CHead c2 (Bind Abbr) u) t3 x
                                                                                                  suppose H23ty3 g (CHead c2 (Bind Abbr) u) (lift (S OO t4) t3
                                                                                                    (H24
                                                                                                       (h1
                                                                                                          by (getl_refl . . .)
getl O (CHead c2 (Bind Abbr) u) (CHead c2 (Bind Abbr) u)
                                                                                                       end of h1
                                                                                                       (h2
                                                                                                          by (csubst1_refl . . .)
csubst1 O u (CHead c2 (Bind Abbr) u) (CHead c2 (Bind Abbr) u)
                                                                                                       end of h2
                                                                                                       (h3
                                                                                                          by (drop_refl .)
                                                                                                          we proved drop O O c2 c2
                                                                                                          that is equivalent to drop (r (Bind AbbrOO c2 c2
                                                                                                          by (drop_drop . . . . previous .)
drop (S OO (CHead c2 (Bind Abbr) u) c2
                                                                                                       end of h3
                                                                                                       by (ty3_gen_cabbr . . . . H23 . . . h1 . h2 . h3)

                                                                                                          ex3_2
                                                                                                            T
                                                                                                            T
                                                                                                            λy1:T.λ:T.subst1 O u (lift (S OO t4) (lift (S OO y1)
                                                                                                            λ:T.λy2:T.subst1 O u t3 (lift (S OO y2)
                                                                                                            λy1:T.λy2:T.ty3 g c2 y1 y2
                                                                                                    end of H24
                                                                                                    we proceed by induction on H24 to prove ty3 g c2 t4 (THead (Bind Abbr) u t3)
                                                                                                       case ex3_2_intro : x0:T x1:T H25:subst1 O u (lift (S OO t4) (lift (S OO x0) H26:subst1 O u t3 (lift (S OO x1) H27:ty3 g c2 x0 x1 
                                                                                                          the thesis becomes ty3 g c2 t4 (THead (Bind Abbr) u t3)
                                                                                                             (H28
                                                                                                                (h1by (le_n .) we proved le O O
                                                                                                                (h2
                                                                                                                   (h1
                                                                                                                      by (le_n .)
                                                                                                                      we proved le (plus (S OO) (plus (S OO)
lt O (plus (S OO)
                                                                                                                   end of h1
                                                                                                                   (h2
                                                                                                                      by (plus_sym . .)
eq nat (plus O (S O)) (plus (S OO)
                                                                                                                   end of h2
                                                                                                                   by (eq_ind_r . . . h1 . h2)
lt O (plus O (S O))
                                                                                                                end of h2
                                                                                                                by (subst1_gen_lift_eq . . . . . . h1 h2 H25)
                                                                                                                we proved eq T (lift (S OO x0) (lift (S OO t4)
                                                                                                                by (lift_inj . . . . previous)
                                                                                                                we proved eq T x0 t4
                                                                                                                we proceed by induction on the previous result to prove ty3 g c2 t4 x1
                                                                                                                   case refl_equal : 
                                                                                                                      the thesis becomes the hypothesis H27
ty3 g c2 t4 x1
                                                                                                             end of H28
                                                                                                             (h1
                                                                                                                by (pr0_refl .)
                                                                                                                we proved pr0 u u
                                                                                                                by (H1 . H4 . previous)
                                                                                                                we proved ty3 g c2 u t0
                                                                                                                by (ty3_bind . . . . previous . . . H22)
ty3 g c2 (THead (Bind Abbr) u t3) (THead (Bind Abbr) u x)
                                                                                                             end of h1
                                                                                                             (h2
                                                                                                                (h1
                                                                                                                   (h1by (pr0_refl .) we proved pr0 u u
                                                                                                                   (h2by (pr0_refl .) we proved pr0 t3 t3
                                                                                                                   by (pr0_delta1 . . h1 . . h2 . H26)
                                                                                                                   we proved 
                                                                                                                      pr0
                                                                                                                        THead (Bind Abbr) u t3
                                                                                                                        THead (Bind Abbr) u (lift (S OO x1)
                                                                                                                   by (pr2_free . . . previous)
                                                                                                                   we proved 
                                                                                                                      pr2
                                                                                                                        c2
                                                                                                                        THead (Bind Abbr) u t3
                                                                                                                        THead (Bind Abbr) u (lift (S OO x1)
                                                                                                                   by (pr3_pr2 . . . previous)

                                                                                                                      pr3
                                                                                                                        c2
                                                                                                                        THead (Bind Abbr) u t3
                                                                                                                        THead (Bind Abbr) u (lift (S OO x1)
                                                                                                                end of h1
                                                                                                                (h2
                                                                                                                   by (pr0_refl .)
                                                                                                                   we proved pr0 x1 x1
                                                                                                                   by (pr0_zeta . H21 . . previous .)
                                                                                                                   we proved pr0 (THead (Bind Abbr) u (lift (S OO x1)) x1
                                                                                                                   by (pr2_free . . . previous)
                                                                                                                   we proved pr2 c2 (THead (Bind Abbr) u (lift (S OO x1)) x1
                                                                                                                   by (pr3_pr2 . . . previous)
pr3 c2 (THead (Bind Abbr) u (lift (S OO x1)) x1
                                                                                                                end of h2
                                                                                                                by (pr3_t . . . h1 . h2)
                                                                                                                we proved pr3 c2 (THead (Bind Abbr) u t3) x1
                                                                                                                by (pc3_pr3_x . . . previous)
pc3 c2 x1 (THead (Bind Abbr) u t3)
                                                                                                             end of h2
                                                                                                             by (ty3_conv . . . . h1 . . H28 h2)
ty3 g c2 t4 (THead (Bind Abbr) u t3)
                                                                                                    we proved ty3 g c2 t4 (THead (Bind Abbr) u t3)

                                                                                                    not (eq B Abbr Abst)
                                                                                                      (ty3 g (CHead c2 (Bind Abbr) u) t3 x
                                                                                                           (ty3 g (CHead c2 (Bind Abbr) u) (lift (S OO t4) t3
                                                                                                                ty3 g c2 t4 (THead (Bind Abbr) u t3)))
                                                                                                  suppose H21not (eq B Abst Abst)
                                                                                                  suppose ty3 g (CHead c2 (Bind Abst) u) t3 x
                                                                                                  suppose ty3 g (CHead c2 (Bind Abst) u) (lift (S OO t4) t3
                                                                                                    (H24
                                                                                                       by (refl_equal . .)
                                                                                                       we proved eq B Abst Abst
                                                                                                       by (H21 previous)
                                                                                                       we proved False
                                                                                                       by cases on the previous result we prove ty3 g c2 t4 (THead (Bind Abst) u t3)
ty3 g c2 t4 (THead (Bind Abst) u t3)
                                                                                                    end of H24
                                                                                                    consider H24
                                                                                                    we proved ty3 g c2 t4 (THead (Bind Abst) u t3)

                                                                                                    not (eq B Abst Abst)
                                                                                                      (ty3 g (CHead c2 (Bind Abst) u) t3 x
                                                                                                           (ty3 g (CHead c2 (Bind Abst) u) (lift (S OO t4) t3
                                                                                                                ty3 g c2 t4 (THead (Bind Abst) u t3)))
                                                                                                  suppose H21not (eq B Void Abst)
                                                                                                  suppose H22ty3 g (CHead c2 (Bind Void) u) t3 x
                                                                                                  suppose H23ty3 g (CHead c2 (Bind Void) u) (lift (S OO t4) t3
                                                                                                    (H24
                                                                                                       (h1
                                                                                                          by (getl_refl . . .)
getl O (CHead c2 (Bind Void) u) (CHead c2 (Bind Void) u)
                                                                                                       end of h1
                                                                                                       (h2
                                                                                                          by (drop_refl .)
                                                                                                          we proved drop O O c2 c2
                                                                                                          that is equivalent to drop (r (Bind VoidOO c2 c2
                                                                                                          by (drop_drop . . . . previous .)
drop (S OO (CHead c2 (Bind Void) u) c2
                                                                                                       end of h2
                                                                                                       by (ty3_gen_cvoid . . . . H23 . . . h1 . h2)

                                                                                                          ex3_2
                                                                                                            T
                                                                                                            T
                                                                                                            λy1:T.λ:T.eq T (lift (S OO t4) (lift (S OO y1)
                                                                                                            λ:T.λy2:T.eq T t3 (lift (S OO y2)
                                                                                                            λy1:T.λy2:T.ty3 g c2 y1 y2
                                                                                                    end of H24
                                                                                                    we proceed by induction on H24 to prove ty3 g c2 t4 (THead (Bind Void) u t3)
                                                                                                       case ex3_2_intro : x0:T x1:T H25:eq T (lift (S OO t4) (lift (S OO x0) H26:eq T t3 (lift (S OO x1) H27:ty3 g c2 x0 x1 
                                                                                                          the thesis becomes ty3 g c2 t4 (THead (Bind Void) u t3)
                                                                                                             (H28
                                                                                                                we proceed by induction on H26 to prove ty3 g (CHead c2 (Bind Void) u) (lift (S OO x1) x
                                                                                                                   case refl_equal : 
                                                                                                                      the thesis becomes the hypothesis H22
ty3 g (CHead c2 (Bind Void) u) (lift (S OO x1) x
                                                                                                             end of H28
                                                                                                             (H29
                                                                                                                by (lift_inj . . . . H25)
                                                                                                                we proved eq T t4 x0
                                                                                                                by (eq_ind_r . . . H27 . previous)
ty3 g c2 t4 x1
                                                                                                             end of H29
                                                                                                             (h1
                                                                                                                by (pr0_refl .)
                                                                                                                we proved pr0 u u
                                                                                                                by (H1 . H4 . previous)
                                                                                                                we proved ty3 g c2 u t0
                                                                                                                by (ty3_bind . . . . previous . . . H28)

                                                                                                                   ty3
                                                                                                                     g
                                                                                                                     c2
                                                                                                                     THead (Bind Void) u (lift (S OO x1)
                                                                                                                     THead (Bind Void) u x
                                                                                                             end of h1
                                                                                                             (h2
                                                                                                                by (pr0_refl .)
                                                                                                                we proved pr0 x1 x1
                                                                                                                by (pr0_zeta . H21 . . previous .)
                                                                                                                we proved pr0 (THead (Bind Void) u (lift (S OO x1)) x1
                                                                                                                by (pr2_free . . . previous)
                                                                                                                we proved pr2 c2 (THead (Bind Void) u (lift (S OO x1)) x1
                                                                                                                by (pc3_pr2_r . . . previous)
                                                                                                                we proved pc3 c2 (THead (Bind Void) u (lift (S OO x1)) x1
                                                                                                                by (pc3_s . . . previous)
pc3 c2 x1 (THead (Bind Void) u (lift (S OO x1))
                                                                                                             end of h2
                                                                                                             by (ty3_conv . . . . h1 . . H29 h2)
                                                                                                             we proved ty3 g c2 t4 (THead (Bind Void) u (lift (S OO x1))
                                                                                                             by (eq_ind_r . . . previous . H26)
ty3 g c2 t4 (THead (Bind Void) u t3)
                                                                                                    we proved ty3 g c2 t4 (THead (Bind Void) u t3)

                                                                                                    not (eq B Void Abst)
                                                                                                      (ty3 g (CHead c2 (Bind Void) u) t3 x
                                                                                                           (ty3 g (CHead c2 (Bind Void) u) (lift (S OO t4) t3
                                                                                                                ty3 g c2 t4 (THead (Bind Void) u t3)))
                                                                                                 by (previous . H16 H20 previous)
ty3 g c2 t4 (THead (Bind b) u t3)
                                                                                        we proved ty3 g c2 t4 (THead (Bind b) u t3)
(not (eq B b Abst))(pr0 t5 t4)(ty3 g c2 t4 (THead (Bind b) u t3))
                                                                            we proved (not (eq B b Abst))(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3))

                                                                            eq T t6 t4
                                                                              (not (eq B b Abst))(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3))
                                                                we proved 
                                                                   eq T t6 t4
                                                                     (not (eq B b Abst))(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3))

                                                                eq T (lift (S OO t5) t2
                                                                  (eq T t6 t4
                                                                       (not (eq B b Abst))(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3)))
                                                    we proved 
                                                       eq T (lift (S OO t5) t2
                                                         (eq T t6 t4
                                                              (not (eq B b Abst))(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3)))

                                                    eq T u0 u
                                                      (eq T (lift (S OO t5) t2
                                                           (eq T t6 t4
                                                                (not (eq B b Abst))(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3))))

                                           eq T u0 u
                                             (eq T (lift (S OO t5) t2
                                                  (eq T t6 t4
                                                       (not (eq B b0 Abst))(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3))))
                                     end of h1
                                     (h2
                                        consider H11
                                        we proved 
                                           eq
                                             T
                                             <λ:T.T>
                                               CASE THead (Bind b0) u0 (lift (S OO t5) OF
                                                 TSort u0
                                               | TLRef u0
                                               | THead  t7 t7
                                             <λ:T.T> CASE THead (Bind b) u t2 OF TSort u0 | TLRef u0 | THead  t7 t7
eq T u0 u
                                     end of h2
                                     by (h1 h2)

                                        eq T (lift (S OO t5) t2
                                          (eq T t6 t4
                                               (not (eq B b0 Abst))(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3)))
                                  end of h1
                                  (h2
                                     consider H10
                                     we proved 
                                        eq
                                          T
                                          <λ:T.T>
                                            CASE THead (Bind b0) u0 (lift (S OO t5) OF
                                              TSort 
                                                  FIXlref_map{
                                                      lref_map:(natnat)natTT
                                                      :=λf:natnat
                                                        .λd:nat
                                                          .λt7:T
                                                            .<λt8:T.T>
                                                              CASE t7 OF
                                                                TSort nTSort n
                                                              | TLRef iTLRef <λb1:bool.nat> CASE blt i d OF truei | falsef i
                                                              | THead k u1 t8THead k (lref_map f d u1) (lref_map f (s k d) t8)
                                                      }
                                                    λx:nat.plus x (S O)
                                                    O
                                                    t5
                                            | TLRef 
                                                  FIXlref_map{
                                                      lref_map:(natnat)natTT
                                                      :=λf:natnat
                                                        .λd:nat
                                                          .λt7:T
                                                            .<λt8:T.T>
                                                              CASE t7 OF
                                                                TSort nTSort n
                                                              | TLRef iTLRef <λb1:bool.nat> CASE blt i d OF truei | falsef i
                                                              | THead k u1 t8THead k (lref_map f d u1) (lref_map f (s k d) t8)
                                                      }
                                                    λx:nat.plus x (S O)
                                                    O
                                                    t5
                                            | THead   t7t7
                                          <λ:T.T>
                                            CASE THead (Bind b) u t2 OF
                                              TSort 
                                                  FIXlref_map{
                                                      lref_map:(natnat)natTT
                                                      :=λf:natnat
                                                        .λd:nat
                                                          .λt7:T
                                                            .<λt8:T.T>
                                                              CASE t7 OF
                                                                TSort nTSort n
                                                              | TLRef iTLRef <λb1:bool.nat> CASE blt i d OF truei | falsef i
                                                              | THead k u1 t8THead k (lref_map f d u1) (lref_map f (s k d) t8)
                                                      }
                                                    λx:nat.plus x (S O)
                                                    O
                                                    t5
                                            | TLRef 
                                                  FIXlref_map{
                                                      lref_map:(natnat)natTT
                                                      :=λf:natnat
                                                        .λd:nat
                                                          .λt7:T
                                                            .<λt8:T.T>
                                                              CASE t7 OF
                                                                TSort nTSort n
                                                              | TLRef iTLRef <λb1:bool.nat> CASE blt i d OF truei | falsef i
                                                              | THead k u1 t8THead k (lref_map f d u1) (lref_map f (s k d) t8)
                                                      }
                                                    λx:nat.plus x (S O)
                                                    O
                                                    t5
                                            | THead   t7t7
eq T (lift (S OO t5) t2
                                  end of h2
                                  by (h1 h2)
                                  we proved 
                                     eq T t6 t4
                                       (not (eq B b0 Abst))(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3))
                                  by (previous H9 H6 H7)
                                  we proved ty3 g c2 t4 (THead (Bind b) u t3)

                                  H8:eq T (THead (Bind b0) u0 (lift (S OO t5)) (THead (Bind b) u t2)
                                    .H9:(eq T t6 t4).(ty3 g c2 t4 (THead (Bind b) u t3))
                            case pr0_tau t5:T t6:T H6:pr0 t5 t6 u0:T 
                               the thesis becomes 
                                     H7:eq T (THead (Flat Cast) u0 t5) (THead (Bind b) u t2)
                                       .H8:(eq T t6 t4).(ty3 g c2 t4 (THead (Bind b) u t3))
                                suppose H7eq T (THead (Flat Cast) u0 t5) (THead (Bind b) u t2)
                                suppose H8eq T t6 t4
                                  (H9
                                     we proceed by induction on H7 to prove 
                                        <λ:T.Prop>
                                          CASE THead (Bind b) u t2 OF
                                            TSort False
                                          | TLRef False
                                          | THead k  <λ:K.Prop> CASE k OF Bind False | Flat True
                                        case refl_equal : 
                                           the thesis becomes 
                                           <λ:T.Prop>
                                             CASE THead (Flat Cast) u0 t5 OF
                                               TSort False
                                             | TLRef False
                                             | THead k  <λ:K.Prop> CASE k OF Bind False | Flat True
                                              consider I
                                              we proved True

                                                 <λ:T.Prop>
                                                   CASE THead (Flat Cast) u0 t5 OF
                                                     TSort False
                                                   | TLRef False
                                                   | THead k  <λ:K.Prop> CASE k OF Bind False | Flat True

                                        <λ:T.Prop>
                                          CASE THead (Bind b) u t2 OF
                                            TSort False
                                          | TLRef False
                                          | THead k  <λ:K.Prop> CASE k OF Bind False | Flat True
                                  end of H9
                                  consider H9
                                  we proved 
                                     <λ:T.Prop>
                                       CASE THead (Bind b) u t2 OF
                                         TSort False
                                       | TLRef False
                                       | THead k  <λ:K.Prop> CASE k OF Bind False | Flat True
                                  that is equivalent to False
                                  we proceed by induction on the previous result to prove (eq T t6 t4)(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3))
                                  we proved (eq T t6 t4)(pr0 t5 t6)(ty3 g c2 t4 (THead (Bind b) u t3))
                                  by (previous H8 H6)
                                  we proved ty3 g c2 t4 (THead (Bind b) u t3)

                                  H7:eq T (THead (Flat Cast) u0 t5) (THead (Bind b) u t2)
                                    .H8:(eq T t6 t4).(ty3 g c2 t4 (THead (Bind b) u t3))

                            eq T (THead (Bind b) u t2) (THead (Bind b) u t2)
                              (eq T t4 t4)(ty3 g c2 t4 (THead (Bind b) u t3))
                      end of H6
                      (h1
                         by (refl_equal . .)
eq T (THead (Bind b) u t2) (THead (Bind b) u t2)
                      end of h1
                      (h2
                         by (refl_equal . .)
eq T t4 t4
                      end of h2
                      by (H6 h1 h2)
                      we proved ty3 g c2 t4 (THead (Bind b) u t3)
c2:C.H4:(wcpr0 c c2).t4:T.H5:(pr0 (THead (Bind b) u t2) t4).(ty3 g c2 t4 (THead (Bind b) u t3))
             case ty3_appl : c:C w:T u:T :ty3 g c w u v:T t0:T H2:ty3 g c v (THead (Bind Abst) u t0) 
                the thesis becomes 
                c2:C
                  .H4:wcpr0 c c2
                    .t2:T
                      .H5:pr0 (THead (Flat Appl) w v) t2
                        .ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))
                (H1) by induction hypothesis we know c2:C.(wcpr0 c c2)t2:T.(pr0 w t2)(ty3 g c2 t2 u)
                (H3) by induction hypothesis we know c2:C.(wcpr0 c c2)t2:T.(pr0 v t2)(ty3 g c2 t2 (THead (Bind Abst) u t0))
                    assume c2C
                    suppose H4wcpr0 c c2
                    assume t2T
                    suppose H5pr0 (THead (Flat Appl) w v) t2
                      (H6
                         by cases on H5 we prove 
                            eq T (THead (Flat Appl) w v) (THead (Flat Appl) w v)
                              (eq T t2 t2)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))
                            case pr0_refl t3:T 
                               the thesis becomes 
                                     H6:eq T t3 (THead (Flat Appl) w v)
                                       .H7:(eq T t3 t2).(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))
                                suppose H6eq T t3 (THead (Flat Appl) w v)
                                suppose H7eq T t3 t2
                                  by (sym_eq . . . H6)
                                  we proved eq T (THead (Flat Appl) w v) t3
                                  suppose H8eq T (THead (Flat Appl) w v) t2
                                     we proceed by induction on H8 to prove ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))
                                        case refl_equal : 
                                           the thesis becomes 
                                           ty3
                                             g
                                             c2
                                             THead (Flat Appl) w v
                                             THead (Flat Appl) w (THead (Bind Abst) u t0)
                                              (h1
                                                 by (pr0_refl .)
                                                 we proved pr0 w w
                                                 by (H1 . H4 . previous)
ty3 g c2 w u
                                              end of h1
                                              (h2
                                                 by (pr0_refl .)
                                                 we proved pr0 v v
                                                 by (H3 . H4 . previous)
ty3 g c2 v (THead (Bind Abst) u t0)
                                              end of h2
                                              by (ty3_appl . . . . h1 . . h2)

                                                 ty3
                                                   g
                                                   c2
                                                   THead (Flat Appl) w v
                                                   THead (Flat Appl) w (THead (Bind Abst) u t0)
                                     we proved ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))

                                     eq T (THead (Flat Appl) w v) t2
                                       ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))
                                  by (previous previous H7)
                                  we proved ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))

                                  H6:eq T t3 (THead (Flat Appl) w v)
                                    .H7:(eq T t3 t2).(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))
                            case pr0_comp u1:T u2:T H6:pr0 u1 u2 t3:T t4:T H7:pr0 t3 t4 k:K 
                               the thesis becomes 
                                     H8:eq T (THead k u1 t3) (THead (Flat Appl) w v)
                                       .H9:eq T (THead k u2 t4) t2
                                         .ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))
                                suppose H8eq T (THead k u1 t3) (THead (Flat Appl) w v)
                                suppose H9eq T (THead k u2 t4) t2
                                  (H10
                                     by (f_equal . . . . . H8)
                                     we proved 
                                        eq
                                          T
                                          <λ:T.T> CASE THead k u1 t3 OF TSort t3 | TLRef t3 | THead   t5t5
                                          <λ:T.T> CASE THead (Flat Appl) w v OF TSort t3 | TLRef t3 | THead   t5t5

                                        eq
                                          T
                                          λe:T.<λ:T.T> CASE e OF TSort t3 | TLRef t3 | THead   t5t5 (THead k u1 t3)
                                          λe:T.<λ:T.T> CASE e OF TSort t3 | TLRef t3 | THead   t5t5
                                            THead (Flat Appl) w v
                                  end of H10
                                  (h1
                                     (H11
                                        by (f_equal . . . . . H8)
                                        we proved 
                                           eq
                                             T
                                             <λ:T.T> CASE THead k u1 t3 OF TSort u1 | TLRef u1 | THead  t5 t5
                                             <λ:T.T> CASE THead (Flat Appl) w v OF TSort u1 | TLRef u1 | THead  t5 t5

                                           eq
                                             T
                                             λe:T.<λ:T.T> CASE e OF TSort u1 | TLRef u1 | THead  t5 t5 (THead k u1 t3)
                                             λe:T.<λ:T.T> CASE e OF TSort u1 | TLRef u1 | THead  t5 t5
                                               THead (Flat Appl) w v
                                     end of H11
                                     (h1
                                        (H12
                                           by (f_equal . . . . . H8)
                                           we proved 
                                              eq
                                                K
                                                <λ:T.K> CASE THead k u1 t3 OF TSort k | TLRef k | THead k0  k0
                                                <λ:T.K>
                                                  CASE THead (Flat Appl) w v OF
                                                    TSort k
                                                  | TLRef k
                                                  | THead k0  k0

                                              eq
                                                K
                                                λe:T.<λ:T.K> CASE e OF TSort k | TLRef k | THead k0  k0 (THead k u1 t3)
                                                λe:T.<λ:T.K> CASE e OF TSort k | TLRef k | THead k0  k0
                                                  THead (Flat Appl) w v
                                        end of H12
                                        consider H12
                                        we proved 
                                           eq
                                             K
                                             <λ:T.K> CASE THead k u1 t3 OF TSort k | TLRef k | THead k0  k0
                                             <λ:T.K>
                                               CASE THead (Flat Appl) w v OF
                                                 TSort k
                                               | TLRef k
                                               | THead k0  k0
                                        that is equivalent to eq K k (Flat Appl)
                                        by (sym_eq . . . previous)
                                        we proved eq K (Flat Appl) k
                                        we proceed by induction on the previous result to prove 
                                           eq T u1 w
                                             (eq T t3 v
                                                  (eq T (THead k u2 t4) t2
                                                       (pr0 u1 u2
                                                            (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))))))
                                           case refl_equal : 
                                              the thesis becomes 
                                              eq T u1 w
                                                (eq T t3 v
                                                     (eq T (THead (Flat Appl) u2 t4) t2
                                                          (pr0 u1 u2
                                                               (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))))))
                                                 suppose H13eq T u1 w
                                                    by (sym_eq . . . H13)
                                                    we proved eq T w u1
                                                    we proceed by induction on the previous result to prove 
                                                       eq T t3 v
                                                         (eq T (THead (Flat Appl) u2 t4) t2
                                                              (pr0 u1 u2
                                                                   (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))))
                                                       case refl_equal : 
                                                          the thesis becomes 
                                                          eq T t3 v
                                                            (eq T (THead (Flat Appl) u2 t4) t2
                                                                 (pr0 w u2
                                                                      (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))))
                                                             suppose H14eq T t3 v
                                                                by (sym_eq . . . H14)
                                                                we proved eq T v t3
                                                                we proceed by induction on the previous result to prove 
                                                                   eq T (THead (Flat Appl) u2 t4) t2
                                                                     (pr0 w u2
                                                                          (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))))
                                                                   case refl_equal : 
                                                                      the thesis becomes 
                                                                      eq T (THead (Flat Appl) u2 t4) t2
                                                                        (pr0 w u2
                                                                             (pr0 v t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))))
                                                                         suppose H15eq T (THead (Flat Appl) u2 t4) t2
                                                                            we proceed by induction on H15 to prove 
                                                                               pr0 w u2
                                                                                 (pr0 v t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))
                                                                               case refl_equal : 
                                                                                  the thesis becomes 
                                                                                  pr0 w u2
                                                                                    (pr0 v t4
                                                                                         (ty3
                                                                                              g
                                                                                              c2
                                                                                              THead (Flat Appl) u2 t4
                                                                                              THead (Flat Appl) w (THead (Bind Abst) u t0)))
                                                                                      suppose H16pr0 w u2
                                                                                      suppose H17pr0 v t4
                                                                                        by (pr0_refl .)
                                                                                        we proved pr0 v v
                                                                                        by (H3 . H4 . previous)
                                                                                        we proved ty3 g c2 v (THead (Bind Abst) u t0)
                                                                                        by (ty3_correct . . . . previous)
                                                                                        we proved ex T λt:T.ty3 g c2 (THead (Bind Abst) u t0) t
                                                                                        we proceed by induction on the previous result to prove 
                                                                                           ty3
                                                                                             g
                                                                                             c2
                                                                                             THead (Flat Appl) u2 t4
                                                                                             THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                           case ex_intro : x:T H18:ty3 g c2 (THead (Bind Abst) u t0) x 
                                                                                              the thesis becomes 
                                                                                              ty3
                                                                                                g
                                                                                                c2
                                                                                                THead (Flat Appl) u2 t4
                                                                                                THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                                 by (ty3_gen_bind . . . . . . H18)
                                                                                                 we proved 
                                                                                                    ex3_2
                                                                                                      T
                                                                                                      T
                                                                                                      λt2:T.λ:T.pc3 c2 (THead (Bind Abst) u t2) x
                                                                                                      λ:T.λt:T.ty3 g c2 u t
                                                                                                      λt2:T.λ:T.ty3 g (CHead c2 (Bind Abst) u) t0 t2
                                                                                                 we proceed by induction on the previous result to prove 
                                                                                                    ty3
                                                                                                      g
                                                                                                      c2
                                                                                                      THead (Flat Appl) u2 t4
                                                                                                      THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                                    case ex3_2_intro : x0:T x1:T :pc3 c2 (THead (Bind Abst) u x0) x H20:ty3 g c2 u x1 H21:ty3 g (CHead c2 (Bind Abst) u) t0 x0 
                                                                                                       the thesis becomes 
                                                                                                       ty3
                                                                                                         g
                                                                                                         c2
                                                                                                         THead (Flat Appl) u2 t4
                                                                                                         THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                                          (h1
                                                                                                             (h1
                                                                                                                by (pr0_refl .)
                                                                                                                we proved pr0 w w
                                                                                                                by (H1 . H4 . previous)
ty3 g c2 w u
                                                                                                             end of h1
                                                                                                             (h2
                                                                                                                by (ty3_bind . . . . H20 . . . H21)
ty3 g c2 (THead (Bind Abst) u t0) (THead (Bind Abst) u x0)
                                                                                                             end of h2
                                                                                                             by (ty3_appl . . . . h1 . . h2)

                                                                                                                ty3
                                                                                                                  g
                                                                                                                  c2
                                                                                                                  THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                                                  THead (Flat Appl) w (THead (Bind Abst) u x0)
                                                                                                          end of h1
                                                                                                          (h2
                                                                                                             (h1by (H1 . H4 . H16) we proved ty3 g c2 u2 u
                                                                                                             (h2
                                                                                                                by (H3 . H4 . H17)
ty3 g c2 t4 (THead (Bind Abst) u t0)
                                                                                                             end of h2
                                                                                                             by (ty3_appl . . . . h1 . . h2)

                                                                                                                ty3
                                                                                                                  g
                                                                                                                  c2
                                                                                                                  THead (Flat Appl) u2 t4
                                                                                                                  THead (Flat Appl) u2 (THead (Bind Abst) u t0)
                                                                                                          end of h2
                                                                                                          (h3
                                                                                                             by (pr2_free . . . H16)
                                                                                                             we proved pr2 c2 w u2
                                                                                                             by (pr2_head_1 . . . previous . .)
                                                                                                             we proved 
                                                                                                                pr2
                                                                                                                  c2
                                                                                                                  THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                                                  THead (Flat Appl) u2 (THead (Bind Abst) u t0)
                                                                                                             by (pc3_pr2_x . . . previous)

                                                                                                                pc3
                                                                                                                  c2
                                                                                                                  THead (Flat Appl) u2 (THead (Bind Abst) u t0)
                                                                                                                  THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                                          end of h3
                                                                                                          by (ty3_conv . . . . h1 . . h2 h3)

                                                                                                             ty3
                                                                                                               g
                                                                                                               c2
                                                                                                               THead (Flat Appl) u2 t4
                                                                                                               THead (Flat Appl) w (THead (Bind Abst) u t0)

                                                                                                    ty3
                                                                                                      g
                                                                                                      c2
                                                                                                      THead (Flat Appl) u2 t4
                                                                                                      THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                        we proved 
                                                                                           ty3
                                                                                             g
                                                                                             c2
                                                                                             THead (Flat Appl) u2 t4
                                                                                             THead (Flat Appl) w (THead (Bind Abst) u t0)

                                                                                        pr0 w u2
                                                                                          (pr0 v t4
                                                                                               (ty3
                                                                                                    g
                                                                                                    c2
                                                                                                    THead (Flat Appl) u2 t4
                                                                                                    THead (Flat Appl) w (THead (Bind Abst) u t0)))
                                                                            we proved 
                                                                               pr0 w u2
                                                                                 (pr0 v t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))

                                                                            eq T (THead (Flat Appl) u2 t4) t2
                                                                              (pr0 w u2
                                                                                   (pr0 v t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))))
                                                                we proved 
                                                                   eq T (THead (Flat Appl) u2 t4) t2
                                                                     (pr0 w u2
                                                                          (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))))

                                                                eq T t3 v
                                                                  (eq T (THead (Flat Appl) u2 t4) t2
                                                                       (pr0 w u2
                                                                            (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))))
                                                    we proved 
                                                       eq T t3 v
                                                         (eq T (THead (Flat Appl) u2 t4) t2
                                                              (pr0 u1 u2
                                                                   (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))))

                                                    eq T u1 w
                                                      (eq T t3 v
                                                           (eq T (THead (Flat Appl) u2 t4) t2
                                                                (pr0 u1 u2
                                                                     (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))))))

                                           eq T u1 w
                                             (eq T t3 v
                                                  (eq T (THead k u2 t4) t2
                                                       (pr0 u1 u2
                                                            (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))))))
                                     end of h1
                                     (h2
                                        consider H11
                                        we proved 
                                           eq
                                             T
                                             <λ:T.T> CASE THead k u1 t3 OF TSort u1 | TLRef u1 | THead  t5 t5
                                             <λ:T.T> CASE THead (Flat Appl) w v OF TSort u1 | TLRef u1 | THead  t5 t5
eq T u1 w
                                     end of h2
                                     by (h1 h2)

                                        eq T t3 v
                                          (eq T (THead k u2 t4) t2
                                               (pr0 u1 u2
                                                    (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))))
                                  end of h1
                                  (h2
                                     consider H10
                                     we proved 
                                        eq
                                          T
                                          <λ:T.T> CASE THead k u1 t3 OF TSort t3 | TLRef t3 | THead   t5t5
                                          <λ:T.T> CASE THead (Flat Appl) w v OF TSort t3 | TLRef t3 | THead   t5t5
eq T t3 v
                                  end of h2
                                  by (h1 h2)
                                  we proved 
                                     eq T (THead k u2 t4) t2
                                       (pr0 u1 u2
                                            (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))))
                                  by (previous H9 H6 H7)
                                  we proved ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))

                                  H8:eq T (THead k u1 t3) (THead (Flat Appl) w v)
                                    .H9:eq T (THead k u2 t4) t2
                                      .ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))
                            case pr0_beta u0:T v1:T v2:T H6:pr0 v1 v2 t3:T t4:T H7:pr0 t3 t4 
                               the thesis becomes 
                                     H8:eq
                                                T
                                                THead (Flat Appl) v1 (THead (Bind Abst) u0 t3)
                                                THead (Flat Appl) w v
                                       .H9:eq T (THead (Bind Abbr) v2 t4) t2
                                         .ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))
                                suppose H8
                                   eq
                                     T
                                     THead (Flat Appl) v1 (THead (Bind Abst) u0 t3)
                                     THead (Flat Appl) w v
                                suppose H9eq T (THead (Bind Abbr) v2 t4) t2
                                  (H10
                                     by (f_equal . . . . . H8)
                                     we proved 
                                        eq
                                          T
                                          <λ:T.T>
                                            CASE THead (Flat Appl) v1 (THead (Bind Abst) u0 t3) OF
                                              TSort THead (Bind Abst) u0 t3
                                            | TLRef THead (Bind Abst) u0 t3
                                            | THead   t5t5
                                          <λ:T.T>
                                            CASE THead (Flat Appl) w v OF
                                              TSort THead (Bind Abst) u0 t3
                                            | TLRef THead (Bind Abst) u0 t3
                                            | THead   t5t5

                                        eq
                                          T
                                          λe:T
                                              .<λ:T.T>
                                                CASE e OF
                                                  TSort THead (Bind Abst) u0 t3
                                                | TLRef THead (Bind Abst) u0 t3
                                                | THead   t5t5
                                            THead (Flat Appl) v1 (THead (Bind Abst) u0 t3)
                                          λe:T
                                              .<λ:T.T>
                                                CASE e OF
                                                  TSort THead (Bind Abst) u0 t3
                                                | TLRef THead (Bind Abst) u0 t3
                                                | THead   t5t5
                                            THead (Flat Appl) w v
                                  end of H10
                                  (h1
                                     (H11
                                        by (f_equal . . . . . H8)
                                        we proved 
                                           eq
                                             T
                                             <λ:T.T>
                                               CASE THead (Flat Appl) v1 (THead (Bind Abst) u0 t3) OF
                                                 TSort v1
                                               | TLRef v1
                                               | THead  t5 t5
                                             <λ:T.T> CASE THead (Flat Appl) w v OF TSort v1 | TLRef v1 | THead  t5 t5

                                           eq
                                             T
                                             λe:T.<λ:T.T> CASE e OF TSort v1 | TLRef v1 | THead  t5 t5
                                               THead (Flat Appl) v1 (THead (Bind Abst) u0 t3)
                                             λe:T.<λ:T.T> CASE e OF TSort v1 | TLRef v1 | THead  t5 t5
                                               THead (Flat Appl) w v
                                     end of H11
                                     consider H11
                                     we proved 
                                        eq
                                          T
                                          <λ:T.T>
                                            CASE THead (Flat Appl) v1 (THead (Bind Abst) u0 t3) OF
                                              TSort v1
                                            | TLRef v1
                                            | THead  t5 t5
                                          <λ:T.T> CASE THead (Flat Appl) w v OF TSort v1 | TLRef v1 | THead  t5 t5
                                     that is equivalent to eq T v1 w
                                     by (sym_eq . . . previous)
                                     we proved eq T w v1
                                     we proceed by induction on the previous result to prove 
                                        eq T (THead (Bind Abst) u0 t3) v
                                          (eq T (THead (Bind Abbr) v2 t4) t2
                                               (pr0 v1 v2
                                                    (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))))
                                        case refl_equal : 
                                           the thesis becomes 
                                           eq T (THead (Bind Abst) u0 t3) v
                                             (eq T (THead (Bind Abbr) v2 t4) t2
                                                  (pr0 w v2
                                                       (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))))
                                              suppose H12eq T (THead (Bind Abst) u0 t3) v
                                                 we proceed by induction on H12 to prove 
                                                    eq T (THead (Bind Abbr) v2 t4) t2
                                                      (pr0 w v2
                                                           (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))))
                                                    case refl_equal : 
                                                       the thesis becomes 
                                                       eq T (THead (Bind Abbr) v2 t4) t2
                                                         (pr0 w v2
                                                              (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))))
                                                          suppose H13eq T (THead (Bind Abbr) v2 t4) t2
                                                             we proceed by induction on H13 to prove 
                                                                pr0 w v2
                                                                  (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))
                                                                case refl_equal : 
                                                                   the thesis becomes 
                                                                   pr0 w v2
                                                                     (pr0 t3 t4
                                                                          (ty3
                                                                               g
                                                                               c2
                                                                               THead (Bind Abbr) v2 t4
                                                                               THead (Flat Appl) w (THead (Bind Abst) u t0)))
                                                                       suppose H14pr0 w v2
                                                                       suppose H15pr0 t3 t4
                                                                         (H16
                                                                            by (eq_ind_r . . . H3 . H12)

                                                                               c3:C
                                                                                 .wcpr0 c c3
                                                                                   t6:T.(pr0 (THead (Bind Abst) u0 t3) t6)(ty3 g c3 t6 (THead (Bind Abst) u t0))
                                                                         end of H16
                                                                         by (pr0_refl .)
                                                                         we proved pr0 (THead (Bind Abst) u0 t3) (THead (Bind Abst) u0 t3)
                                                                         by (H16 . H4 . previous)
                                                                         we proved ty3 g c2 (THead (Bind Abst) u0 t3) (THead (Bind Abst) u t0)
                                                                         by (ty3_correct . . . . previous)
                                                                         we proved ex T λt:T.ty3 g c2 (THead (Bind Abst) u t0) t
                                                                         we proceed by induction on the previous result to prove 
                                                                            ty3
                                                                              g
                                                                              c2
                                                                              THead (Bind Abbr) v2 t4
                                                                              THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                            case ex_intro : x:T H18:ty3 g c2 (THead (Bind Abst) u t0) x 
                                                                               the thesis becomes 
                                                                               ty3
                                                                                 g
                                                                                 c2
                                                                                 THead (Bind Abbr) v2 t4
                                                                                 THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                  by (ty3_gen_bind . . . . . . H18)
                                                                                  we proved 
                                                                                     ex3_2
                                                                                       T
                                                                                       T
                                                                                       λt2:T.λ:T.pc3 c2 (THead (Bind Abst) u t2) x
                                                                                       λ:T.λt:T.ty3 g c2 u t
                                                                                       λt2:T.λ:T.ty3 g (CHead c2 (Bind Abst) u) t0 t2
                                                                                  we proceed by induction on the previous result to prove 
                                                                                     ty3
                                                                                       g
                                                                                       c2
                                                                                       THead (Bind Abbr) v2 t4
                                                                                       THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                     case ex3_2_intro : x0:T x1:T :pc3 c2 (THead (Bind Abst) u x0) x H20:ty3 g c2 u x1 H21:ty3 g (CHead c2 (Bind Abst) u) t0 x0 
                                                                                        the thesis becomes 
                                                                                        ty3
                                                                                          g
                                                                                          c2
                                                                                          THead (Bind Abbr) v2 t4
                                                                                          THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                           by (pr0_refl .)
                                                                                           we proved pr0 u0 u0
                                                                                           by (pr0_comp . . previous . . H15 .)
                                                                                           we proved pr0 (THead (Bind Abst) u0 t3) (THead (Bind Abst) u0 t4)
                                                                                           by (H16 . H4 . previous)
                                                                                           we proved ty3 g c2 (THead (Bind Abst) u0 t4) (THead (Bind Abst) u t0)
                                                                                           by (ty3_gen_bind . . . . . . previous)
                                                                                           we proved 
                                                                                              ex3_2
                                                                                                T
                                                                                                T
                                                                                                λt2:T.λ:T.pc3 c2 (THead (Bind Abst) u0 t2) (THead (Bind Abst) u t0)
                                                                                                λ:T.λt:T.ty3 g c2 u0 t
                                                                                                λt2:T.λ:T.ty3 g (CHead c2 (Bind Abst) u0) t4 t2
                                                                                           we proceed by induction on the previous result to prove 
                                                                                              ty3
                                                                                                g
                                                                                                c2
                                                                                                THead (Bind Abbr) v2 t4
                                                                                                THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                              case ex3_2_intro : x2:T x3:T H22:pc3 c2 (THead (Bind Abst) u0 x2) (THead (Bind Abst) u t0) H23:ty3 g c2 u0 x3 H24:ty3 g (CHead c2 (Bind Abst) u0) t4 x2 
                                                                                                 the thesis becomes 
                                                                                                 ty3
                                                                                                   g
                                                                                                   c2
                                                                                                   THead (Bind Abbr) v2 t4
                                                                                                   THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                                    by (pc3_gen_abst . . . . . H22)
                                                                                                    we proved land (pc3 c2 u0 u) b:B.u:T.(pc3 (CHead c2 (Bind b) u) x2 t0)
                                                                                                    we proceed by induction on the previous result to prove 
                                                                                                       ty3
                                                                                                         g
                                                                                                         c2
                                                                                                         THead (Bind Abbr) v2 t4
                                                                                                         THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                                       case conj : H25:pc3 c2 u0 u H26:b:B.u1:T.(pc3 (CHead c2 (Bind b) u1) x2 t0) 
                                                                                                          the thesis becomes 
                                                                                                          ty3
                                                                                                            g
                                                                                                            c2
                                                                                                            THead (Bind Abbr) v2 t4
                                                                                                            THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                                             (h1
                                                                                                                (h1
                                                                                                                   by (pr0_refl .)
                                                                                                                   we proved pr0 w w
                                                                                                                   by (H1 . H4 . previous)
ty3 g c2 w u
                                                                                                                end of h1
                                                                                                                (h2
                                                                                                                   by (ty3_bind . . . . H20 . . . H21)
ty3 g c2 (THead (Bind Abst) u t0) (THead (Bind Abst) u x0)
                                                                                                                end of h2
                                                                                                                by (ty3_appl . . . . h1 . . h2)

                                                                                                                   ty3
                                                                                                                     g
                                                                                                                     c2
                                                                                                                     THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                                                     THead (Flat Appl) w (THead (Bind Abst) u x0)
                                                                                                             end of h1
                                                                                                             (h2
                                                                                                                (h1by (H1 . H4 . H14) we proved ty3 g c2 v2 u
                                                                                                                (h2
                                                                                                                   (h1by (H1 . H4 . H14) we proved ty3 g c2 v2 u
                                                                                                                   (h2by (pc3_s . . . H25) we proved pc3 c2 u u0
                                                                                                                   by (ty3_conv . . . . H23 . . h1 h2)
                                                                                                                   we proved ty3 g c2 v2 u0
                                                                                                                   by (csubt_ty3_ld . . . . previous . . H24)
ty3 g (CHead c2 (Bind Abbr) v2) t4 x2
                                                                                                                end of h2
                                                                                                                by (ty3_bind . . . . h1 . . . h2)
ty3 g c2 (THead (Bind Abbr) v2 t4) (THead (Bind Abbr) v2 x2)
                                                                                                             end of h2
                                                                                                             (h3
                                                                                                                (h1
                                                                                                                   by (H26 . .)
                                                                                                                   we proved pc3 (CHead c2 (Bind Abbr) v2) x2 t0
                                                                                                                   by (pc3_head_2 . . . . . previous)
pc3 c2 (THead (Bind Abbr) v2 x2) (THead (Bind Abbr) v2 t0)
                                                                                                                end of h1
                                                                                                                (h2
                                                                                                                   by (pr0_refl .)
                                                                                                                   we proved pr0 t0 t0
                                                                                                                   by (pr0_beta . . . H14 . . previous)
                                                                                                                   we proved 
                                                                                                                      pr0
                                                                                                                        THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                                                        THead (Bind Abbr) v2 t0
                                                                                                                   by (pr2_free . . . previous)
                                                                                                                   we proved 
                                                                                                                      pr2
                                                                                                                        c2
                                                                                                                        THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                                                        THead (Bind Abbr) v2 t0
                                                                                                                   by (pc3_pr2_x . . . previous)

                                                                                                                      pc3
                                                                                                                        c2
                                                                                                                        THead (Bind Abbr) v2 t0
                                                                                                                        THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                                                end of h2
                                                                                                                by (pc3_t . . . h1 . h2)

                                                                                                                   pc3
                                                                                                                     c2
                                                                                                                     THead (Bind Abbr) v2 x2
                                                                                                                     THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                                             end of h3
                                                                                                             by (ty3_conv . . . . h1 . . h2 h3)

                                                                                                                ty3
                                                                                                                  g
                                                                                                                  c2
                                                                                                                  THead (Bind Abbr) v2 t4
                                                                                                                  THead (Flat Appl) w (THead (Bind Abst) u t0)

                                                                                                       ty3
                                                                                                         g
                                                                                                         c2
                                                                                                         THead (Bind Abbr) v2 t4
                                                                                                         THead (Flat Appl) w (THead (Bind Abst) u t0)

                                                                                              ty3
                                                                                                g
                                                                                                c2
                                                                                                THead (Bind Abbr) v2 t4
                                                                                                THead (Flat Appl) w (THead (Bind Abst) u t0)

                                                                                     ty3
                                                                                       g
                                                                                       c2
                                                                                       THead (Bind Abbr) v2 t4
                                                                                       THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                         we proved 
                                                                            ty3
                                                                              g
                                                                              c2
                                                                              THead (Bind Abbr) v2 t4
                                                                              THead (Flat Appl) w (THead (Bind Abst) u t0)

                                                                         pr0 w v2
                                                                           (pr0 t3 t4
                                                                                (ty3
                                                                                     g
                                                                                     c2
                                                                                     THead (Bind Abbr) v2 t4
                                                                                     THead (Flat Appl) w (THead (Bind Abst) u t0)))
                                                             we proved 
                                                                pr0 w v2
                                                                  (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))

                                                             eq T (THead (Bind Abbr) v2 t4) t2
                                                               (pr0 w v2
                                                                    (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))))
                                                 we proved 
                                                    eq T (THead (Bind Abbr) v2 t4) t2
                                                      (pr0 w v2
                                                           (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))))

                                                 eq T (THead (Bind Abst) u0 t3) v
                                                   (eq T (THead (Bind Abbr) v2 t4) t2
                                                        (pr0 w v2
                                                             (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))))

                                        eq T (THead (Bind Abst) u0 t3) v
                                          (eq T (THead (Bind Abbr) v2 t4) t2
                                               (pr0 v1 v2
                                                    (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))))
                                  end of h1
                                  (h2
                                     consider H10
                                     we proved 
                                        eq
                                          T
                                          <λ:T.T>
                                            CASE THead (Flat Appl) v1 (THead (Bind Abst) u0 t3) OF
                                              TSort THead (Bind Abst) u0 t3
                                            | TLRef THead (Bind Abst) u0 t3
                                            | THead   t5t5
                                          <λ:T.T>
                                            CASE THead (Flat Appl) w v OF
                                              TSort THead (Bind Abst) u0 t3
                                            | TLRef THead (Bind Abst) u0 t3
                                            | THead   t5t5
eq T (THead (Bind Abst) u0 t3) v
                                  end of h2
                                  by (h1 h2)
                                  we proved 
                                     eq T (THead (Bind Abbr) v2 t4) t2
                                       (pr0 v1 v2
                                            (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))))
                                  by (previous H9 H6 H7)
                                  we proved ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))

                                  H8:eq
                                             T
                                             THead (Flat Appl) v1 (THead (Bind Abst) u0 t3)
                                             THead (Flat Appl) w v
                                    .H9:eq T (THead (Bind Abbr) v2 t4) t2
                                      .ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))
                            case pr0_upsilon b:B H6:not (eq B b Abst) v1:T v2:T H7:pr0 v1 v2 u1:T u2:T H8:pr0 u1 u2 t3:T t4:T H9:pr0 t3 t4 
                               the thesis becomes 
                                     H10:eq
                                                  T
                                                  THead (Flat Appl) v1 (THead (Bind b) u1 t3)
                                                  THead (Flat Appl) w v
                                       .H11:eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)) t2
                                         .ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))
                                suppose H10
                                   eq
                                     T
                                     THead (Flat Appl) v1 (THead (Bind b) u1 t3)
                                     THead (Flat Appl) w v
                                suppose H11eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)) t2
                                  (H12
                                     by (f_equal . . . . . H10)
                                     we proved 
                                        eq
                                          T
                                          <λ:T.T>
                                            CASE THead (Flat Appl) v1 (THead (Bind b) u1 t3) OF
                                              TSort THead (Bind b) u1 t3
                                            | TLRef THead (Bind b) u1 t3
                                            | THead   t5t5
                                          <λ:T.T>
                                            CASE THead (Flat Appl) w v OF
                                              TSort THead (Bind b) u1 t3
                                            | TLRef THead (Bind b) u1 t3
                                            | THead   t5t5

                                        eq
                                          T
                                          λe:T
                                              .<λ:T.T>
                                                CASE e OF
                                                  TSort THead (Bind b) u1 t3
                                                | TLRef THead (Bind b) u1 t3
                                                | THead   t5t5
                                            THead (Flat Appl) v1 (THead (Bind b) u1 t3)
                                          λe:T
                                              .<λ:T.T>
                                                CASE e OF
                                                  TSort THead (Bind b) u1 t3
                                                | TLRef THead (Bind b) u1 t3
                                                | THead   t5t5
                                            THead (Flat Appl) w v
                                  end of H12
                                  (h1
                                     (H13
                                        by (f_equal . . . . . H10)
                                        we proved 
                                           eq
                                             T
                                             <λ:T.T>
                                               CASE THead (Flat Appl) v1 (THead (Bind b) u1 t3) OF
                                                 TSort v1
                                               | TLRef v1
                                               | THead  t5 t5
                                             <λ:T.T> CASE THead (Flat Appl) w v OF TSort v1 | TLRef v1 | THead  t5 t5

                                           eq
                                             T
                                             λe:T.<λ:T.T> CASE e OF TSort v1 | TLRef v1 | THead  t5 t5
                                               THead (Flat Appl) v1 (THead (Bind b) u1 t3)
                                             λe:T.<λ:T.T> CASE e OF TSort v1 | TLRef v1 | THead  t5 t5
                                               THead (Flat Appl) w v
                                     end of H13
                                     consider H13
                                     we proved 
                                        eq
                                          T
                                          <λ:T.T>
                                            CASE THead (Flat Appl) v1 (THead (Bind b) u1 t3) OF
                                              TSort v1
                                            | TLRef v1
                                            | THead  t5 t5
                                          <λ:T.T> CASE THead (Flat Appl) w v OF TSort v1 | TLRef v1 | THead  t5 t5
                                     that is equivalent to eq T v1 w
                                     by (sym_eq . . . previous)
                                     we proved eq T w v1
                                     we proceed by induction on the previous result to prove 
                                        eq T (THead (Bind b) u1 t3) v
                                          (eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)) t2
                                               (not (eq B b Abst)
                                                    (pr0 v1 v2
                                                         (pr0 u1 u2
                                                              (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))))))
                                        case refl_equal : 
                                           the thesis becomes 
                                           eq T (THead (Bind b) u1 t3) v
                                             (eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)) t2
                                                  (not (eq B b Abst)
                                                       (pr0 w v2
                                                            (pr0 u1 u2
                                                                 (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))))))
                                              suppose H14eq T (THead (Bind b) u1 t3) v
                                                 we proceed by induction on H14 to prove 
                                                    eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)) t2
                                                      (not (eq B b Abst)
                                                           (pr0 w v2
                                                                (pr0 u1 u2
                                                                     (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))))))
                                                    case refl_equal : 
                                                       the thesis becomes 
                                                       eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)) t2
                                                         (not (eq B b Abst)
                                                              (pr0 w v2
                                                                   (pr0 u1 u2
                                                                        (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))))))
                                                          suppose H15eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)) t2
                                                             we proceed by induction on H15 to prove 
                                                                not (eq B b Abst)
                                                                  (pr0 w v2
                                                                       (pr0 u1 u2
                                                                            (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))))
                                                                case refl_equal : 
                                                                   the thesis becomes 
                                                                   not (eq B b Abst)
                                                                     (pr0 w v2
                                                                          (pr0 u1 u2
                                                                               (pr0 t3 t4
                                                                                    (ty3
                                                                                         g
                                                                                         c2
                                                                                         THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)
                                                                                         THead (Flat Appl) w (THead (Bind Abst) u t0)))))
                                                                       suppose H16not (eq B b Abst)
                                                                       suppose H17pr0 w v2
                                                                       suppose H18pr0 u1 u2
                                                                       suppose H19pr0 t3 t4
                                                                         (H20
                                                                            by (eq_ind_r . . . H3 . H14)

                                                                               c3:C
                                                                                 .wcpr0 c c3
                                                                                   t6:T.(pr0 (THead (Bind b) u1 t3) t6)(ty3 g c3 t6 (THead (Bind Abst) u t0))
                                                                         end of H20
                                                                         by (pr0_comp . . H18 . . H19 .)
                                                                         we proved pr0 (THead (Bind b) u1 t3) (THead (Bind b) u2 t4)
                                                                         by (H20 . H4 . previous)
                                                                         we proved ty3 g c2 (THead (Bind b) u2 t4) (THead (Bind Abst) u t0)
                                                                         by (ty3_correct . . . . previous)
                                                                         we proved ex T λt:T.ty3 g c2 (THead (Bind Abst) u t0) t
                                                                         we proceed by induction on the previous result to prove 
                                                                            ty3
                                                                              g
                                                                              c2
                                                                              THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)
                                                                              THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                            case ex_intro : x:T H22:ty3 g c2 (THead (Bind Abst) u t0) x 
                                                                               the thesis becomes 
                                                                               ty3
                                                                                 g
                                                                                 c2
                                                                                 THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)
                                                                                 THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                  (H23consider H22
                                                                                  by (ty3_gen_bind . . . . . . H23)
                                                                                  we proved 
                                                                                     ex3_2
                                                                                       T
                                                                                       T
                                                                                       λt2:T.λ:T.pc3 c2 (THead (Bind Abst) u t2) x
                                                                                       λ:T.λt:T.ty3 g c2 u t
                                                                                       λt2:T.λ:T.ty3 g (CHead c2 (Bind Abst) u) t0 t2
                                                                                  we proceed by induction on the previous result to prove 
                                                                                     ty3
                                                                                       g
                                                                                       c2
                                                                                       THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)
                                                                                       THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                     case ex3_2_intro : x0:T x1:T :pc3 c2 (THead (Bind Abst) u x0) x H25:ty3 g c2 u x1 H26:ty3 g (CHead c2 (Bind Abst) u) t0 x0 
                                                                                        the thesis becomes 
                                                                                        ty3
                                                                                          g
                                                                                          c2
                                                                                          THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)
                                                                                          THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                           by (pr0_comp . . H18 . . H19 .)
                                                                                           we proved pr0 (THead (Bind b) u1 t3) (THead (Bind b) u2 t4)
                                                                                           by (H20 . H4 . previous)
                                                                                           we proved ty3 g c2 (THead (Bind b) u2 t4) (THead (Bind Abst) u t0)
                                                                                           by (ty3_gen_bind . . . . . . previous)
                                                                                           we proved 
                                                                                              ex3_2
                                                                                                T
                                                                                                T
                                                                                                λt2:T.λ:T.pc3 c2 (THead (Bind b) u2 t2) (THead (Bind Abst) u t0)
                                                                                                λ:T.λt:T.ty3 g c2 u2 t
                                                                                                λt2:T.λ:T.ty3 g (CHead c2 (Bind b) u2) t4 t2
                                                                                           we proceed by induction on the previous result to prove 
                                                                                              ty3
                                                                                                g
                                                                                                c2
                                                                                                THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)
                                                                                                THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                              case ex3_2_intro : x2:T x3:T H27:pc3 c2 (THead (Bind b) u2 x2) (THead (Bind Abst) u t0) H28:ty3 g c2 u2 x3 H29:ty3 g (CHead c2 (Bind b) u2) t4 x2 
                                                                                                 the thesis becomes 
                                                                                                 ty3
                                                                                                   g
                                                                                                   c2
                                                                                                   THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)
                                                                                                   THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                                    (H30
                                                                                                       by (lift_bind . . . . .)
                                                                                                       we proved 
                                                                                                          eq
                                                                                                            T
                                                                                                            lift (S OO (THead (Bind Abst) u t0)
                                                                                                            THead (Bind Abst) (lift (S OO u) (lift (S O) (S O) t0)
                                                                                                       we proceed by induction on the previous result to prove 
                                                                                                          pc3
                                                                                                            CHead c2 (Bind b) u2
                                                                                                            x2
                                                                                                            THead (Bind Abst) (lift (S OO u) (lift (S O) (S O) t0)
                                                                                                          case refl_equal : 
                                                                                                             the thesis becomes pc3 (CHead c2 (Bind b) u2) x2 (lift (S OO (THead (Bind Abst) u t0))
                                                                                                                by (pc3_gen_not_abst . H16 . . . . . H27)
pc3 (CHead c2 (Bind b) u2) x2 (lift (S OO (THead (Bind Abst) u t0))

                                                                                                          pc3
                                                                                                            CHead c2 (Bind b) u2
                                                                                                            x2
                                                                                                            THead (Bind Abst) (lift (S OO u) (lift (S O) (S O) t0)
                                                                                                    end of H30
                                                                                                    (H31
                                                                                                       by (lift_bind . . . . .)
                                                                                                       we proved 
                                                                                                          eq
                                                                                                            T
                                                                                                            lift (S OO (THead (Bind Abst) u t0)
                                                                                                            THead (Bind Abst) (lift (S OO u) (lift (S O) (S O) t0)
                                                                                                       we proceed by induction on the previous result to prove 
                                                                                                          ty3
                                                                                                            g
                                                                                                            CHead c2 (Bind b) u2
                                                                                                            THead (Bind Abst) (lift (S OO u) (lift (S O) (S O) t0)
                                                                                                            lift (S OO x
                                                                                                          case refl_equal : 
                                                                                                             the thesis becomes 
                                                                                                             ty3
                                                                                                               g
                                                                                                               CHead c2 (Bind b) u2
                                                                                                               lift (S OO (THead (Bind Abst) u t0)
                                                                                                               lift (S OO x
                                                                                                                by (drop_refl .)
                                                                                                                we proved drop O O c2 c2
                                                                                                                that is equivalent to drop (r (Bind b) OO c2 c2
                                                                                                                by (drop_drop . . . . previous .)
                                                                                                                we proved drop (S OO (CHead c2 (Bind b) u2) c2
                                                                                                                by (ty3_lift . . . . H22 . . . previous)

                                                                                                                   ty3
                                                                                                                     g
                                                                                                                     CHead c2 (Bind b) u2
                                                                                                                     lift (S OO (THead (Bind Abst) u t0)
                                                                                                                     lift (S OO x

                                                                                                          ty3
                                                                                                            g
                                                                                                            CHead c2 (Bind b) u2
                                                                                                            THead (Bind Abst) (lift (S OO u) (lift (S O) (S O) t0)
                                                                                                            lift (S OO x
                                                                                                    end of H31
                                                                                                    by (ty3_gen_bind . . . . . . H31)
                                                                                                    we proved 
                                                                                                       ex3_2
                                                                                                         T
                                                                                                         T
                                                                                                         λt2:T
                                                                                                           .λ:T
                                                                                                             .pc3
                                                                                                               CHead c2 (Bind b) u2
                                                                                                               THead (Bind Abst) (lift (S OO u) t2
                                                                                                               lift (S OO x
                                                                                                         λ:T.λt:T.ty3 g (CHead c2 (Bind b) u2) (lift (S OO u) t
                                                                                                         λt2:T
                                                                                                           .λ:T
                                                                                                             .ty3
                                                                                                               g
                                                                                                               CHead (CHead c2 (Bind b) u2) (Bind Abst) (lift (S OO u)
                                                                                                               lift (S O) (S O) t0
                                                                                                               t2
                                                                                                    we proceed by induction on the previous result to prove 
                                                                                                       ty3
                                                                                                         g
                                                                                                         c2
                                                                                                         THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)
                                                                                                         THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                                       case ex3_2_intro : x4:T x5:T :pc3 (CHead c2 (Bind b) u2) (THead (Bind Abst) (lift (S OO u) x4) (lift (S OO x) H33:ty3 g (CHead c2 (Bind b) u2) (lift (S OO u) x5 H34:ty3 g (CHead (CHead c2 (Bind b) u2) (Bind Abst) (lift (S OO u)) (lift (S O) (S O) t0) x4 
                                                                                                          the thesis becomes 
                                                                                                          ty3
                                                                                                            g
                                                                                                            c2
                                                                                                            THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)
                                                                                                            THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                                             (h1
                                                                                                                (h1
                                                                                                                   by (pr0_refl .)
                                                                                                                   we proved pr0 w w
                                                                                                                   by (H1 . H4 . previous)
ty3 g c2 w u
                                                                                                                end of h1
                                                                                                                (h2
                                                                                                                   by (ty3_bind . . . . H25 . . . H26)
ty3 g c2 (THead (Bind Abst) u t0) (THead (Bind Abst) u x0)
                                                                                                                end of h2
                                                                                                                by (ty3_appl . . . . h1 . . h2)

                                                                                                                   ty3
                                                                                                                     g
                                                                                                                     c2
                                                                                                                     THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                                                     THead (Flat Appl) w (THead (Bind Abst) u x0)
                                                                                                             end of h1
                                                                                                             (h2
                                                                                                                (h1
                                                                                                                   (h1by (H1 . H4 . H17) we proved ty3 g c2 v2 u
                                                                                                                   (h2
                                                                                                                      by (drop_refl .)
                                                                                                                      we proved drop O O c2 c2
                                                                                                                      that is equivalent to drop (r (Bind b) OO c2 c2
                                                                                                                      by (drop_drop . . . . previous .)
drop (S OO (CHead c2 (Bind b) u2) c2
                                                                                                                   end of h2
                                                                                                                   by (ty3_lift . . . . h1 . . . h2)
ty3 g (CHead c2 (Bind b) u2) (lift (S OO v2) (lift (S OO u)
                                                                                                                end of h1
                                                                                                                (h2
                                                                                                                   by (ty3_bind . . . . H33 . . . H34)
                                                                                                                   we proved 
                                                                                                                      ty3
                                                                                                                        g
                                                                                                                        CHead c2 (Bind b) u2
                                                                                                                        THead (Bind Abst) (lift (S OO u) (lift (S O) (S O) t0)
                                                                                                                        THead (Bind Abst) (lift (S OO u) x4
                                                                                                                   by (ty3_conv . . . . previous . . H29 H30)

                                                                                                                      ty3
                                                                                                                        g
                                                                                                                        CHead c2 (Bind b) u2
                                                                                                                        t4
                                                                                                                        THead (Bind Abst) (lift (S OO u) (lift (S O) (S O) t0)
                                                                                                                end of h2
                                                                                                                by (ty3_appl . . . . h1 . . h2)
                                                                                                                we proved 
                                                                                                                   ty3
                                                                                                                     g
                                                                                                                     CHead c2 (Bind b) u2
                                                                                                                     THead (Flat Appl) (lift (S OO v2) t4
                                                                                                                     THead
                                                                                                                       Flat Appl
                                                                                                                       lift (S OO v2
                                                                                                                       THead (Bind Abst) (lift (S OO u) (lift (S O) (S O) t0)
                                                                                                                by (ty3_bind . . . . H28 . . . previous)

                                                                                                                   ty3
                                                                                                                     g
                                                                                                                     c2
                                                                                                                     THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)
                                                                                                                     THead
                                                                                                                       Bind b
                                                                                                                       u2
                                                                                                                       THead
                                                                                                                         Flat Appl
                                                                                                                         lift (S OO v2
                                                                                                                         THead (Bind Abst) (lift (S OO u) (lift (S O) (S O) t0)
                                                                                                             end of h2
                                                                                                             (h3
                                                                                                                by (lift_bind . . . . .)
                                                                                                                we proved 
                                                                                                                   eq
                                                                                                                     T
                                                                                                                     lift (S OO (THead (Bind Abst) u t0)
                                                                                                                     THead (Bind Abst) (lift (S OO u) (lift (S O) (S O) t0)
                                                                                                                we proceed by induction on the previous result to prove 
                                                                                                                   pc3
                                                                                                                     c2
                                                                                                                     THead
                                                                                                                       Bind b
                                                                                                                       u2
                                                                                                                       THead
                                                                                                                         Flat Appl
                                                                                                                         lift (S OO v2
                                                                                                                         THead (Bind Abst) (lift (S OO u) (lift (S O) (S O) t0)
                                                                                                                     THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                                                   case refl_equal : 
                                                                                                                      the thesis becomes 
                                                                                                                      pc3
                                                                                                                        c2
                                                                                                                        THead
                                                                                                                          Bind b
                                                                                                                          u2
                                                                                                                          THead
                                                                                                                            Flat Appl
                                                                                                                            lift (S OO v2
                                                                                                                            lift (S OO (THead (Bind Abst) u t0)
                                                                                                                        THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                                                         (h1
                                                                                                                            (h1by (pr0_refl .) we proved pr0 v2 v2
                                                                                                                            (h2by (pr0_refl .) we proved pr0 u2 u2
                                                                                                                            (h3
                                                                                                                               by (pr0_refl .)

                                                                                                                                  pr0
                                                                                                                                    lift (S OO (THead (Bind Abst) u t0)
                                                                                                                                    lift (S OO (THead (Bind Abst) u t0)
                                                                                                                            end of h3
                                                                                                                            by (pr0_upsilon . H16 . . h1 . . h2 . . h3)

                                                                                                                               pr0
                                                                                                                                 THead
                                                                                                                                   Flat Appl
                                                                                                                                   v2
                                                                                                                                   THead (Bind b) u2 (lift (S OO (THead (Bind Abst) u t0))
                                                                                                                                 THead
                                                                                                                                   Bind b
                                                                                                                                   u2
                                                                                                                                   THead
                                                                                                                                     Flat Appl
                                                                                                                                     lift (S OO v2
                                                                                                                                     lift (S OO (THead (Bind Abst) u t0)
                                                                                                                         end of h1
                                                                                                                         (h2
                                                                                                                            (h1
                                                                                                                               by (pc1_pr0_x . . H17)
pc1 v2 w
                                                                                                                            end of h1
                                                                                                                            (h2
                                                                                                                               by (pr0_refl .)
                                                                                                                               we proved pr0 (THead (Bind Abst) u t0) (THead (Bind Abst) u t0)
                                                                                                                               by (pr0_zeta . H16 . . previous .)
                                                                                                                               we proved 
                                                                                                                                  pr0
                                                                                                                                    THead (Bind b) u2 (lift (S OO (THead (Bind Abst) u t0))
                                                                                                                                    THead (Bind Abst) u t0
                                                                                                                               by (pc1_pr0_r . . previous)

                                                                                                                                  pc1
                                                                                                                                    THead (Bind b) u2 (lift (S OO (THead (Bind Abst) u t0))
                                                                                                                                    THead (Bind Abst) u t0
                                                                                                                            end of h2
                                                                                                                            by (pc1_head . . h1 . . h2 .)

                                                                                                                               pc1
                                                                                                                                 THead
                                                                                                                                   Flat Appl
                                                                                                                                   v2
                                                                                                                                   THead (Bind b) u2 (lift (S OO (THead (Bind Abst) u t0))
                                                                                                                                 THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                                                         end of h2
                                                                                                                         by (pc1_pr0_u2 . . h1 . h2)
                                                                                                                         we proved 
                                                                                                                            pc1
                                                                                                                              THead
                                                                                                                                Bind b
                                                                                                                                u2
                                                                                                                                THead
                                                                                                                                  Flat Appl
                                                                                                                                  lift (S OO v2
                                                                                                                                  lift (S OO (THead (Bind Abst) u t0)
                                                                                                                              THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                                                         by (pc3_pc1 . . previous .)

                                                                                                                            pc3
                                                                                                                              c2
                                                                                                                              THead
                                                                                                                                Bind b
                                                                                                                                u2
                                                                                                                                THead
                                                                                                                                  Flat Appl
                                                                                                                                  lift (S OO v2
                                                                                                                                  lift (S OO (THead (Bind Abst) u t0)
                                                                                                                              THead (Flat Appl) w (THead (Bind Abst) u t0)

                                                                                                                   pc3
                                                                                                                     c2
                                                                                                                     THead
                                                                                                                       Bind b
                                                                                                                       u2
                                                                                                                       THead
                                                                                                                         Flat Appl
                                                                                                                         lift (S OO v2
                                                                                                                         THead (Bind Abst) (lift (S OO u) (lift (S O) (S O) t0)
                                                                                                                     THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                                                             end of h3
                                                                                                             by (ty3_conv . . . . h1 . . h2 h3)

                                                                                                                ty3
                                                                                                                  g
                                                                                                                  c2
                                                                                                                  THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)
                                                                                                                  THead (Flat Appl) w (THead (Bind Abst) u t0)

                                                                                                       ty3
                                                                                                         g
                                                                                                         c2
                                                                                                         THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)
                                                                                                         THead (Flat Appl) w (THead (Bind Abst) u t0)

                                                                                              ty3
                                                                                                g
                                                                                                c2
                                                                                                THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)
                                                                                                THead (Flat Appl) w (THead (Bind Abst) u t0)

                                                                                     ty3
                                                                                       g
                                                                                       c2
                                                                                       THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)
                                                                                       THead (Flat Appl) w (THead (Bind Abst) u t0)
                                                                         we proved 
                                                                            ty3
                                                                              g
                                                                              c2
                                                                              THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)
                                                                              THead (Flat Appl) w (THead (Bind Abst) u t0)

                                                                         not (eq B b Abst)
                                                                           (pr0 w v2
                                                                                (pr0 u1 u2
                                                                                     (pr0 t3 t4
                                                                                          (ty3
                                                                                               g
                                                                                               c2
                                                                                               THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)
                                                                                               THead (Flat Appl) w (THead (Bind Abst) u t0)))))
                                                             we proved 
                                                                not (eq B b Abst)
                                                                  (pr0 w v2
                                                                       (pr0 u1 u2
                                                                            (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))))

                                                             eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)) t2
                                                               (not (eq B b Abst)
                                                                    (pr0 w v2
                                                                         (pr0 u1 u2
                                                                              (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))))))
                                                 we proved 
                                                    eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)) t2
                                                      (not (eq B b Abst)
                                                           (pr0 w v2
                                                                (pr0 u1 u2
                                                                     (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))))))

                                                 eq T (THead (Bind b) u1 t3) v
                                                   (eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)) t2
                                                        (not (eq B b Abst)
                                                             (pr0 w v2
                                                                  (pr0 u1 u2
                                                                       (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))))))

                                        eq T (THead (Bind b) u1 t3) v
                                          (eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)) t2
                                               (not (eq B b Abst)
                                                    (pr0 v1 v2
                                                         (pr0 u1 u2
                                                              (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))))))
                                  end of h1
                                  (h2
                                     consider H12
                                     we proved 
                                        eq
                                          T
                                          <λ:T.T>
                                            CASE THead (Flat Appl) v1 (THead (Bind b) u1 t3) OF
                                              TSort THead (Bind b) u1 t3
                                            | TLRef THead (Bind b) u1 t3
                                            | THead   t5t5
                                          <λ:T.T>
                                            CASE THead (Flat Appl) w v OF
                                              TSort THead (Bind b) u1 t3
                                            | TLRef THead (Bind b) u1 t3
                                            | THead   t5t5
eq T (THead (Bind b) u1 t3) v
                                  end of h2
                                  by (h1 h2)
                                  we proved 
                                     eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)) t2
                                       (not (eq B b Abst)
                                            (pr0 v1 v2
                                                 (pr0 u1 u2
                                                      (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))))))
                                  by (previous H11 H6 H7 H8 H9)
                                  we proved ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))

                                  H10:eq
                                               T
                                               THead (Flat Appl) v1 (THead (Bind b) u1 t3)
                                               THead (Flat Appl) w v
                                    .H11:eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t4)) t2
                                      .ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))
                            case pr0_delta u1:T u2:T H6:pr0 u1 u2 t3:T t4:T H7:pr0 t3 t4 w0:T H8:subst0 O u2 t4 w0 
                               the thesis becomes 
                                     H9:eq T (THead (Bind Abbr) u1 t3) (THead (Flat Appl) w v)
                                       .H10:eq T (THead (Bind Abbr) u2 w0) t2
                                         .ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))
                                suppose H9eq T (THead (Bind Abbr) u1 t3) (THead (Flat Appl) w v)
                                suppose H10eq T (THead (Bind Abbr) u2 w0) t2
                                  (H11
                                     we proceed by induction on H9 to prove 
                                        <λ:T.Prop>
                                          CASE THead (Flat Appl) w v OF
                                            TSort False
                                          | TLRef False
                                          | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                                        case refl_equal : 
                                           the thesis becomes 
                                           <λ:T.Prop>
                                             CASE THead (Bind Abbr) u1 t3 OF
                                               TSort False
                                             | TLRef False
                                             | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                                              consider I
                                              we proved True

                                                 <λ:T.Prop>
                                                   CASE THead (Bind Abbr) u1 t3 OF
                                                     TSort False
                                                   | TLRef False
                                                   | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False

                                        <λ:T.Prop>
                                          CASE THead (Flat Appl) w v OF
                                            TSort False
                                          | TLRef False
                                          | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                                  end of H11
                                  consider H11
                                  we proved 
                                     <λ:T.Prop>
                                       CASE THead (Flat Appl) w v OF
                                         TSort False
                                       | TLRef False
                                       | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                                  that is equivalent to False
                                  we proceed by induction on the previous result to prove 
                                     eq T (THead (Bind Abbr) u2 w0) t2
                                       (pr0 u1 u2
                                            (pr0 t3 t4
                                                 (subst0 O u2 t4 w0)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))))
                                  we proved 
                                     eq T (THead (Bind Abbr) u2 w0) t2
                                       (pr0 u1 u2
                                            (pr0 t3 t4
                                                 (subst0 O u2 t4 w0)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))))
                                  by (previous H10 H6 H7 H8)
                                  we proved ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))

                                  H9:eq T (THead (Bind Abbr) u1 t3) (THead (Flat Appl) w v)
                                    .H10:eq T (THead (Bind Abbr) u2 w0) t2
                                      .ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))
                            case pr0_zeta b:B H6:not (eq B b Abst) t3:T t4:T H7:pr0 t3 t4 u0:T 
                               the thesis becomes 
                                     H8:eq
                                                T
                                                THead (Bind b) u0 (lift (S OO t3)
                                                THead (Flat Appl) w v
                                       .H9:(eq T t4 t2).(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))
                                suppose H8
                                   eq
                                     T
                                     THead (Bind b) u0 (lift (S OO t3)
                                     THead (Flat Appl) w v
                                suppose H9eq T t4 t2
                                  (H10
                                     we proceed by induction on H8 to prove 
                                        <λ:T.Prop>
                                          CASE THead (Flat Appl) w v OF
                                            TSort False
                                          | TLRef False
                                          | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                                        case refl_equal : 
                                           the thesis becomes 
                                           <λ:T.Prop>
                                             CASE THead (Bind b) u0 (lift (S OO t3) OF
                                               TSort False
                                             | TLRef False
                                             | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                                              consider I
                                              we proved True

                                                 <λ:T.Prop>
                                                   CASE THead (Bind b) u0 (lift (S OO t3) OF
                                                     TSort False
                                                   | TLRef False
                                                   | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False

                                        <λ:T.Prop>
                                          CASE THead (Flat Appl) w v OF
                                            TSort False
                                          | TLRef False
                                          | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                                  end of H10
                                  consider H10
                                  we proved 
                                     <λ:T.Prop>
                                       CASE THead (Flat Appl) w v OF
                                         TSort False
                                       | TLRef False
                                       | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                                  that is equivalent to False
                                  we proceed by induction on the previous result to prove 
                                     eq T t4 t2
                                       (not (eq B b Abst)
                                            (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))))
                                  we proved 
                                     eq T t4 t2
                                       (not (eq B b Abst)
                                            (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))))
                                  by (previous H9 H6 H7)
                                  we proved ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))

                                  H8:eq
                                             T
                                             THead (Bind b) u0 (lift (S OO t3)
                                             THead (Flat Appl) w v
                                    .H9:(eq T t4 t2).(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))
                            case pr0_tau t3:T t4:T H6:pr0 t3 t4 u0:T 
                               the thesis becomes 
                                     H7:eq T (THead (Flat Cast) u0 t3) (THead (Flat Appl) w v)
                                       .H8:(eq T t4 t2).(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))
                                suppose H7eq T (THead (Flat Cast) u0 t3) (THead (Flat Appl) w v)
                                suppose H8eq T t4 t2
                                  (H9
                                     we proceed by induction on H7 to prove 
                                        <λ:T.Prop>
                                          CASE THead (Flat Appl) w v OF
                                            TSort False
                                          | TLRef False
                                          | THead k  
                                                <λ:K.Prop>
                                                  CASE k OF
                                                    Bind False
                                                  | Flat f<λ:F.Prop> CASE f OF ApplFalse | CastTrue
                                        case refl_equal : 
                                           the thesis becomes 
                                           <λ:T.Prop>
                                             CASE THead (Flat Cast) u0 t3 OF
                                               TSort False
                                             | TLRef False
                                             | THead k  
                                                   <λ:K.Prop>
                                                     CASE k OF
                                                       Bind False
                                                     | Flat f<λ:F.Prop> CASE f OF ApplFalse | CastTrue
                                              consider I
                                              we proved True

                                                 <λ:T.Prop>
                                                   CASE THead (Flat Cast) u0 t3 OF
                                                     TSort False
                                                   | TLRef False
                                                   | THead k  
                                                         <λ:K.Prop>
                                                           CASE k OF
                                                             Bind False
                                                           | Flat f<λ:F.Prop> CASE f OF ApplFalse | CastTrue

                                        <λ:T.Prop>
                                          CASE THead (Flat Appl) w v OF
                                            TSort False
                                          | TLRef False
                                          | THead k  
                                                <λ:K.Prop>
                                                  CASE k OF
                                                    Bind False
                                                  | Flat f<λ:F.Prop> CASE f OF ApplFalse | CastTrue
                                  end of H9
                                  consider H9
                                  we proved 
                                     <λ:T.Prop>
                                       CASE THead (Flat Appl) w v OF
                                         TSort False
                                       | TLRef False
                                       | THead k  
                                             <λ:K.Prop>
                                               CASE k OF
                                                 Bind False
                                               | Flat f<λ:F.Prop> CASE f OF ApplFalse | CastTrue
                                  that is equivalent to False
                                  we proceed by induction on the previous result to prove 
                                     eq T t4 t2
                                       (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))
                                  we proved 
                                     eq T t4 t2
                                       (pr0 t3 t4)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))
                                  by (previous H8 H6)
                                  we proved ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))

                                  H7:eq T (THead (Flat Cast) u0 t3) (THead (Flat Appl) w v)
                                    .H8:(eq T t4 t2).(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))

                            eq T (THead (Flat Appl) w v) (THead (Flat Appl) w v)
                              (eq T t2 t2)(ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0)))
                      end of H6
                      (h1
                         by (refl_equal . .)
eq T (THead (Flat Appl) w v) (THead (Flat Appl) w v)
                      end of h1
                      (h2
                         by (refl_equal . .)
eq T t2 t2
                      end of h2
                      by (H6 h1 h2)
                      we proved ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))

                      c2:C
                        .H4:wcpr0 c c2
                          .t2:T
                            .H5:pr0 (THead (Flat Appl) w v) t2
                              .ty3 g c2 t2 (THead (Flat Appl) w (THead (Bind Abst) u t0))
             case ty3_cast : c:C t2:T t3:T :ty3 g c t2 t3 t0:T :ty3 g c t3 t0 
                the thesis becomes c2:C.H4:(wcpr0 c c2).t4:T.H5:(pr0 (THead (Flat Cast) t3 t2) t4).(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                (H1) by induction hypothesis we know c2:C.(wcpr0 c c2)t4:T.(pr0 t2 t4)(ty3 g c2 t4 t3)
                (H3) by induction hypothesis we know c2:C.(wcpr0 c c2)t4:T.(pr0 t3 t4)(ty3 g c2 t4 t0)
                    assume c2C
                    suppose H4wcpr0 c c2
                    assume t4T
                    suppose H5pr0 (THead (Flat Cast) t3 t2) t4
                      (H6
                         by cases on H5 we prove 
                            eq T (THead (Flat Cast) t3 t2) (THead (Flat Cast) t3 t2)
                              (eq T t4 t4)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                            case pr0_refl t5:T 
                               the thesis becomes H6:(eq T t5 (THead (Flat Cast) t3 t2)).H7:(eq T t5 t4).(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                suppose H6eq T t5 (THead (Flat Cast) t3 t2)
                                suppose H7eq T t5 t4
                                  by (sym_eq . . . H6)
                                  we proved eq T (THead (Flat Cast) t3 t2) t5
                                  suppose H8eq T (THead (Flat Cast) t3 t2) t4
                                     we proceed by induction on H8 to prove ty3 g c2 t4 (THead (Flat Cast) t0 t3)
                                        case refl_equal : 
                                           the thesis becomes ty3 g c2 (THead (Flat Cast) t3 t2) (THead (Flat Cast) t0 t3)
                                              (h1
                                                 by (pr0_refl .)
                                                 we proved pr0 t2 t2
                                                 by (H1 . H4 . previous)
ty3 g c2 t2 t3
                                              end of h1
                                              (h2
                                                 by (pr0_refl .)
                                                 we proved pr0 t3 t3
                                                 by (H3 . H4 . previous)
ty3 g c2 t3 t0
                                              end of h2
                                              by (ty3_cast . . . . h1 . h2)
ty3 g c2 (THead (Flat Cast) t3 t2) (THead (Flat Cast) t0 t3)
                                     we proved ty3 g c2 t4 (THead (Flat Cast) t0 t3)
(eq T (THead (Flat Cast) t3 t2) t4)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                  by (previous previous H7)
                                  we proved ty3 g c2 t4 (THead (Flat Cast) t0 t3)
H6:(eq T t5 (THead (Flat Cast) t3 t2)).H7:(eq T t5 t4).(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                            case pr0_comp u1:T u2:T H6:pr0 u1 u2 t5:T t6:T H7:pr0 t5 t6 k:K 
                               the thesis becomes 
                                     H8:eq T (THead k u1 t5) (THead (Flat Cast) t3 t2)
                                       .H9:(eq T (THead k u2 t6) t4).(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                suppose H8eq T (THead k u1 t5) (THead (Flat Cast) t3 t2)
                                suppose H9eq T (THead k u2 t6) t4
                                  (H10
                                     by (f_equal . . . . . H8)
                                     we proved 
                                        eq
                                          T
                                          <λ:T.T> CASE THead k u1 t5 OF TSort t5 | TLRef t5 | THead   t7t7
                                          <λ:T.T> CASE THead (Flat Cast) t3 t2 OF TSort t5 | TLRef t5 | THead   t7t7

                                        eq
                                          T
                                          λe:T.<λ:T.T> CASE e OF TSort t5 | TLRef t5 | THead   t7t7 (THead k u1 t5)
                                          λe:T.<λ:T.T> CASE e OF TSort t5 | TLRef t5 | THead   t7t7
                                            THead (Flat Cast) t3 t2
                                  end of H10
                                  (h1
                                     (H11
                                        by (f_equal . . . . . H8)
                                        we proved 
                                           eq
                                             T
                                             <λ:T.T> CASE THead k u1 t5 OF TSort u1 | TLRef u1 | THead  t7 t7
                                             <λ:T.T> CASE THead (Flat Cast) t3 t2 OF TSort u1 | TLRef u1 | THead  t7 t7

                                           eq
                                             T
                                             λe:T.<λ:T.T> CASE e OF TSort u1 | TLRef u1 | THead  t7 t7 (THead k u1 t5)
                                             λe:T.<λ:T.T> CASE e OF TSort u1 | TLRef u1 | THead  t7 t7
                                               THead (Flat Cast) t3 t2
                                     end of H11
                                     (h1
                                        (H12
                                           by (f_equal . . . . . H8)
                                           we proved 
                                              eq
                                                K
                                                <λ:T.K> CASE THead k u1 t5 OF TSort k | TLRef k | THead k0  k0
                                                <λ:T.K> CASE THead (Flat Cast) t3 t2 OF TSort k | TLRef k | THead k0  k0

                                              eq
                                                K
                                                λe:T.<λ:T.K> CASE e OF TSort k | TLRef k | THead k0  k0 (THead k u1 t5)
                                                λe:T.<λ:T.K> CASE e OF TSort k | TLRef k | THead k0  k0
                                                  THead (Flat Cast) t3 t2
                                        end of H12
                                        consider H12
                                        we proved 
                                           eq
                                             K
                                             <λ:T.K> CASE THead k u1 t5 OF TSort k | TLRef k | THead k0  k0
                                             <λ:T.K> CASE THead (Flat Cast) t3 t2 OF TSort k | TLRef k | THead k0  k0
                                        that is equivalent to eq K k (Flat Cast)
                                        by (sym_eq . . . previous)
                                        we proved eq K (Flat Cast) k
                                        we proceed by induction on the previous result to prove 
                                           eq T u1 t3
                                             (eq T t5 t2
                                                  (eq T (THead k u2 t6) t4
                                                       (pr0 u1 u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))))
                                           case refl_equal : 
                                              the thesis becomes 
                                              eq T u1 t3
                                                (eq T t5 t2
                                                     (eq T (THead (Flat Cast) u2 t6) t4
                                                          (pr0 u1 u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))))
                                                 suppose H13eq T u1 t3
                                                    by (sym_eq . . . H13)
                                                    we proved eq T t3 u1
                                                    we proceed by induction on the previous result to prove 
                                                       eq T t5 t2
                                                         (eq T (THead (Flat Cast) u2 t6) t4
                                                              (pr0 u1 u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3)))
                                                       case refl_equal : 
                                                          the thesis becomes 
                                                          eq T t5 t2
                                                            (eq T (THead (Flat Cast) u2 t6) t4
                                                                 (pr0 t3 u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3)))
                                                             suppose H14eq T t5 t2
                                                                by (sym_eq . . . H14)
                                                                we proved eq T t2 t5
                                                                we proceed by induction on the previous result to prove 
                                                                   eq T (THead (Flat Cast) u2 t6) t4
                                                                     (pr0 t3 u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                                                   case refl_equal : 
                                                                      the thesis becomes 
                                                                      eq T (THead (Flat Cast) u2 t6) t4
                                                                        (pr0 t3 u2)(pr0 t2 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                                                         suppose H15eq T (THead (Flat Cast) u2 t6) t4
                                                                            we proceed by induction on H15 to prove (pr0 t3 u2)(pr0 t2 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                                                               case refl_equal : 
                                                                                  the thesis becomes 
                                                                                  pr0 t3 u2
                                                                                    (pr0 t2 t6)(ty3 g c2 (THead (Flat Cast) u2 t6) (THead (Flat Cast) t0 t3))
                                                                                      suppose H16pr0 t3 u2
                                                                                      suppose H17pr0 t2 t6
                                                                                        by (pr0_refl .)
                                                                                        we proved pr0 t3 t3
                                                                                        by (H3 . H4 . previous)
                                                                                        we proved ty3 g c2 t3 t0
                                                                                        by (ty3_correct . . . . previous)
                                                                                        we proved ex T λt:T.ty3 g c2 t0 t
                                                                                        we proceed by induction on the previous result to prove ty3 g c2 (THead (Flat Cast) u2 t6) (THead (Flat Cast) t0 t3)
                                                                                           case ex_intro : x:T H18:ty3 g c2 t0 x 
                                                                                              the thesis becomes ty3 g c2 (THead (Flat Cast) u2 t6) (THead (Flat Cast) t0 t3)
                                                                                                 (h1
                                                                                                    by (pr0_refl .)
                                                                                                    we proved pr0 t3 t3
                                                                                                    by (H3 . H4 . previous)
                                                                                                    we proved ty3 g c2 t3 t0
                                                                                                    by (ty3_cast . . . . previous . H18)
ty3 g c2 (THead (Flat Cast) t0 t3) (THead (Flat Cast) x t0)
                                                                                                 end of h1
                                                                                                 (h2
                                                                                                    (h1
                                                                                                       (h1by (H3 . H4 . H16) we proved ty3 g c2 u2 t0
                                                                                                       (h2by (H1 . H4 . H17) we proved ty3 g c2 t6 t3
                                                                                                       (h3
                                                                                                          by (pr2_free . . . H16)
                                                                                                          we proved pr2 c2 t3 u2
                                                                                                          by (pc3_pr2_r . . . previous)
pc3 c2 t3 u2
                                                                                                       end of h3
                                                                                                       by (ty3_conv . . . . h1 . . h2 h3)
ty3 g c2 t6 u2
                                                                                                    end of h1
                                                                                                    (h2by (H3 . H4 . H16) we proved ty3 g c2 u2 t0
                                                                                                    by (ty3_cast . . . . h1 . h2)
ty3 g c2 (THead (Flat Cast) u2 t6) (THead (Flat Cast) t0 u2)
                                                                                                 end of h2
                                                                                                 (h3
                                                                                                    by (pr2_free . . . H16)
                                                                                                    we proved pr2 c2 t3 u2
                                                                                                    by (pr2_thin_dx . . . previous . .)
                                                                                                    we proved pr2 c2 (THead (Flat Cast) t0 t3) (THead (Flat Cast) t0 u2)
                                                                                                    by (pc3_pr2_r . . . previous)
                                                                                                    we proved pc3 c2 (THead (Flat Cast) t0 t3) (THead (Flat Cast) t0 u2)
                                                                                                    by (pc3_s . . . previous)
pc3 c2 (THead (Flat Cast) t0 u2) (THead (Flat Cast) t0 t3)
                                                                                                 end of h3
                                                                                                 by (ty3_conv . . . . h1 . . h2 h3)
ty3 g c2 (THead (Flat Cast) u2 t6) (THead (Flat Cast) t0 t3)
                                                                                        we proved ty3 g c2 (THead (Flat Cast) u2 t6) (THead (Flat Cast) t0 t3)

                                                                                        pr0 t3 u2
                                                                                          (pr0 t2 t6)(ty3 g c2 (THead (Flat Cast) u2 t6) (THead (Flat Cast) t0 t3))
                                                                            we proved (pr0 t3 u2)(pr0 t2 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))

                                                                            eq T (THead (Flat Cast) u2 t6) t4
                                                                              (pr0 t3 u2)(pr0 t2 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                                                we proved 
                                                                   eq T (THead (Flat Cast) u2 t6) t4
                                                                     (pr0 t3 u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))

                                                                eq T t5 t2
                                                                  (eq T (THead (Flat Cast) u2 t6) t4
                                                                       (pr0 t3 u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3)))
                                                    we proved 
                                                       eq T t5 t2
                                                         (eq T (THead (Flat Cast) u2 t6) t4
                                                              (pr0 u1 u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3)))

                                                    eq T u1 t3
                                                      (eq T t5 t2
                                                           (eq T (THead (Flat Cast) u2 t6) t4
                                                                (pr0 u1 u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))))

                                           eq T u1 t3
                                             (eq T t5 t2
                                                  (eq T (THead k u2 t6) t4
                                                       (pr0 u1 u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))))
                                     end of h1
                                     (h2
                                        consider H11
                                        we proved 
                                           eq
                                             T
                                             <λ:T.T> CASE THead k u1 t5 OF TSort u1 | TLRef u1 | THead  t7 t7
                                             <λ:T.T> CASE THead (Flat Cast) t3 t2 OF TSort u1 | TLRef u1 | THead  t7 t7
eq T u1 t3
                                     end of h2
                                     by (h1 h2)

                                        eq T t5 t2
                                          (eq T (THead k u2 t6) t4
                                               (pr0 u1 u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3)))
                                  end of h1
                                  (h2
                                     consider H10
                                     we proved 
                                        eq
                                          T
                                          <λ:T.T> CASE THead k u1 t5 OF TSort t5 | TLRef t5 | THead   t7t7
                                          <λ:T.T> CASE THead (Flat Cast) t3 t2 OF TSort t5 | TLRef t5 | THead   t7t7
eq T t5 t2
                                  end of h2
                                  by (h1 h2)
                                  we proved 
                                     eq T (THead k u2 t6) t4
                                       (pr0 u1 u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                  by (previous H9 H6 H7)
                                  we proved ty3 g c2 t4 (THead (Flat Cast) t0 t3)

                                  H8:eq T (THead k u1 t5) (THead (Flat Cast) t3 t2)
                                    .H9:(eq T (THead k u2 t6) t4).(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                            case pr0_beta u:T v1:T v2:T H6:pr0 v1 v2 t5:T t6:T H7:pr0 t5 t6 
                               the thesis becomes 
                                     H8:eq
                                                T
                                                THead (Flat Appl) v1 (THead (Bind Abst) u t5)
                                                THead (Flat Cast) t3 t2
                                       .H9:(eq T (THead (Bind Abbr) v2 t6) t4).(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                suppose H8
                                   eq
                                     T
                                     THead (Flat Appl) v1 (THead (Bind Abst) u t5)
                                     THead (Flat Cast) t3 t2
                                suppose H9eq T (THead (Bind Abbr) v2 t6) t4
                                  (H10
                                     we proceed by induction on H8 to prove 
                                        <λ:T.Prop>
                                          CASE THead (Flat Cast) t3 t2 OF
                                            TSort False
                                          | TLRef False
                                          | THead k  
                                                <λ:K.Prop>
                                                  CASE k OF
                                                    Bind False
                                                  | Flat f<λ:F.Prop> CASE f OF ApplTrue | CastFalse
                                        case refl_equal : 
                                           the thesis becomes 
                                           <λ:T.Prop>
                                             CASE THead (Flat Appl) v1 (THead (Bind Abst) u t5) OF
                                               TSort False
                                             | TLRef False
                                             | THead k  
                                                   <λ:K.Prop>
                                                     CASE k OF
                                                       Bind False
                                                     | Flat f<λ:F.Prop> CASE f OF ApplTrue | CastFalse
                                              consider I
                                              we proved True

                                                 <λ:T.Prop>
                                                   CASE THead (Flat Appl) v1 (THead (Bind Abst) u t5) OF
                                                     TSort False
                                                   | TLRef False
                                                   | THead k  
                                                         <λ:K.Prop>
                                                           CASE k OF
                                                             Bind False
                                                           | Flat f<λ:F.Prop> CASE f OF ApplTrue | CastFalse

                                        <λ:T.Prop>
                                          CASE THead (Flat Cast) t3 t2 OF
                                            TSort False
                                          | TLRef False
                                          | THead k  
                                                <λ:K.Prop>
                                                  CASE k OF
                                                    Bind False
                                                  | Flat f<λ:F.Prop> CASE f OF ApplTrue | CastFalse
                                  end of H10
                                  consider H10
                                  we proved 
                                     <λ:T.Prop>
                                       CASE THead (Flat Cast) t3 t2 OF
                                         TSort False
                                       | TLRef False
                                       | THead k  
                                             <λ:K.Prop>
                                               CASE k OF
                                                 Bind False
                                               | Flat f<λ:F.Prop> CASE f OF ApplTrue | CastFalse
                                  that is equivalent to False
                                  we proceed by induction on the previous result to prove 
                                     eq T (THead (Bind Abbr) v2 t6) t4
                                       (pr0 v1 v2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                  we proved 
                                     eq T (THead (Bind Abbr) v2 t6) t4
                                       (pr0 v1 v2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                  by (previous H9 H6 H7)
                                  we proved ty3 g c2 t4 (THead (Flat Cast) t0 t3)

                                  H8:eq
                                             T
                                             THead (Flat Appl) v1 (THead (Bind Abst) u t5)
                                             THead (Flat Cast) t3 t2
                                    .H9:(eq T (THead (Bind Abbr) v2 t6) t4).(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                            case pr0_upsilon b:B H6:not (eq B b Abst) v1:T v2:T H7:pr0 v1 v2 u1:T u2:T H8:pr0 u1 u2 t5:T t6:T H9:pr0 t5 t6 
                               the thesis becomes 
                                     H10:eq
                                                  T
                                                  THead (Flat Appl) v1 (THead (Bind b) u1 t5)
                                                  THead (Flat Cast) t3 t2
                                       .H11:eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t6)) t4
                                         .ty3 g c2 t4 (THead (Flat Cast) t0 t3)
                                suppose H10
                                   eq
                                     T
                                     THead (Flat Appl) v1 (THead (Bind b) u1 t5)
                                     THead (Flat Cast) t3 t2
                                suppose H11eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t6)) t4
                                  (H12
                                     we proceed by induction on H10 to prove 
                                        <λ:T.Prop>
                                          CASE THead (Flat Cast) t3 t2 OF
                                            TSort False
                                          | TLRef False
                                          | THead k  
                                                <λ:K.Prop>
                                                  CASE k OF
                                                    Bind False
                                                  | Flat f<λ:F.Prop> CASE f OF ApplTrue | CastFalse
                                        case refl_equal : 
                                           the thesis becomes 
                                           <λ:T.Prop>
                                             CASE THead (Flat Appl) v1 (THead (Bind b) u1 t5) OF
                                               TSort False
                                             | TLRef False
                                             | THead k  
                                                   <λ:K.Prop>
                                                     CASE k OF
                                                       Bind False
                                                     | Flat f<λ:F.Prop> CASE f OF ApplTrue | CastFalse
                                              consider I
                                              we proved True

                                                 <λ:T.Prop>
                                                   CASE THead (Flat Appl) v1 (THead (Bind b) u1 t5) OF
                                                     TSort False
                                                   | TLRef False
                                                   | THead k  
                                                         <λ:K.Prop>
                                                           CASE k OF
                                                             Bind False
                                                           | Flat f<λ:F.Prop> CASE f OF ApplTrue | CastFalse

                                        <λ:T.Prop>
                                          CASE THead (Flat Cast) t3 t2 OF
                                            TSort False
                                          | TLRef False
                                          | THead k  
                                                <λ:K.Prop>
                                                  CASE k OF
                                                    Bind False
                                                  | Flat f<λ:F.Prop> CASE f OF ApplTrue | CastFalse
                                  end of H12
                                  consider H12
                                  we proved 
                                     <λ:T.Prop>
                                       CASE THead (Flat Cast) t3 t2 OF
                                         TSort False
                                       | TLRef False
                                       | THead k  
                                             <λ:K.Prop>
                                               CASE k OF
                                                 Bind False
                                               | Flat f<λ:F.Prop> CASE f OF ApplTrue | CastFalse
                                  that is equivalent to False
                                  we proceed by induction on the previous result to prove 
                                     eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t6)) t4
                                       (not (eq B b Abst)
                                            (pr0 v1 v2)(pr0 u1 u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3)))
                                  we proved 
                                     eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t6)) t4
                                       (not (eq B b Abst)
                                            (pr0 v1 v2)(pr0 u1 u2)(pr0 t5 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3)))
                                  by (previous H11 H6 H7 H8 H9)
                                  we proved ty3 g c2 t4 (THead (Flat Cast) t0 t3)

                                  H10:eq
                                               T
                                               THead (Flat Appl) v1 (THead (Bind b) u1 t5)
                                               THead (Flat Cast) t3 t2
                                    .H11:eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t6)) t4
                                      .ty3 g c2 t4 (THead (Flat Cast) t0 t3)
                            case pr0_delta u1:T u2:T H6:pr0 u1 u2 t5:T t6:T H7:pr0 t5 t6 w:T H8:subst0 O u2 t6 w 
                               the thesis becomes 
                                     H9:eq T (THead (Bind Abbr) u1 t5) (THead (Flat Cast) t3 t2)
                                       .H10:(eq T (THead (Bind Abbr) u2 w) t4).(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                suppose H9eq T (THead (Bind Abbr) u1 t5) (THead (Flat Cast) t3 t2)
                                suppose H10eq T (THead (Bind Abbr) u2 w) t4
                                  (H11
                                     we proceed by induction on H9 to prove 
                                        <λ:T.Prop>
                                          CASE THead (Flat Cast) t3 t2 OF
                                            TSort False
                                          | TLRef False
                                          | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                                        case refl_equal : 
                                           the thesis becomes 
                                           <λ:T.Prop>
                                             CASE THead (Bind Abbr) u1 t5 OF
                                               TSort False
                                             | TLRef False
                                             | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                                              consider I
                                              we proved True

                                                 <λ:T.Prop>
                                                   CASE THead (Bind Abbr) u1 t5 OF
                                                     TSort False
                                                   | TLRef False
                                                   | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False

                                        <λ:T.Prop>
                                          CASE THead (Flat Cast) t3 t2 OF
                                            TSort False
                                          | TLRef False
                                          | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                                  end of H11
                                  consider H11
                                  we proved 
                                     <λ:T.Prop>
                                       CASE THead (Flat Cast) t3 t2 OF
                                         TSort False
                                       | TLRef False
                                       | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                                  that is equivalent to False
                                  we proceed by induction on the previous result to prove 
                                     eq T (THead (Bind Abbr) u2 w) t4
                                       (pr0 u1 u2)(pr0 t5 t6)(subst0 O u2 t6 w)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                  we proved 
                                     eq T (THead (Bind Abbr) u2 w) t4
                                       (pr0 u1 u2)(pr0 t5 t6)(subst0 O u2 t6 w)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                  by (previous H10 H6 H7 H8)
                                  we proved ty3 g c2 t4 (THead (Flat Cast) t0 t3)

                                  H9:eq T (THead (Bind Abbr) u1 t5) (THead (Flat Cast) t3 t2)
                                    .H10:(eq T (THead (Bind Abbr) u2 w) t4).(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                            case pr0_zeta b:B H6:not (eq B b Abst) t5:T t6:T H7:pr0 t5 t6 u:T 
                               the thesis becomes 
                                     H8:eq T (THead (Bind b) u (lift (S OO t5)) (THead (Flat Cast) t3 t2)
                                       .H9:(eq T t6 t4).(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                suppose H8
                                   eq T (THead (Bind b) u (lift (S OO t5)) (THead (Flat Cast) t3 t2)
                                suppose H9eq T t6 t4
                                  (H10
                                     we proceed by induction on H8 to prove 
                                        <λ:T.Prop>
                                          CASE THead (Flat Cast) t3 t2 OF
                                            TSort False
                                          | TLRef False
                                          | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                                        case refl_equal : 
                                           the thesis becomes 
                                           <λ:T.Prop>
                                             CASE THead (Bind b) u (lift (S OO t5) OF
                                               TSort False
                                             | TLRef False
                                             | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                                              consider I
                                              we proved True

                                                 <λ:T.Prop>
                                                   CASE THead (Bind b) u (lift (S OO t5) OF
                                                     TSort False
                                                   | TLRef False
                                                   | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False

                                        <λ:T.Prop>
                                          CASE THead (Flat Cast) t3 t2 OF
                                            TSort False
                                          | TLRef False
                                          | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                                  end of H10
                                  consider H10
                                  we proved 
                                     <λ:T.Prop>
                                       CASE THead (Flat Cast) t3 t2 OF
                                         TSort False
                                       | TLRef False
                                       | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                                  that is equivalent to False
                                  we proceed by induction on the previous result to prove 
                                     eq T t6 t4
                                       (not (eq B b Abst))(pr0 t5 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                  we proved 
                                     eq T t6 t4
                                       (not (eq B b Abst))(pr0 t5 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                  by (previous H9 H6 H7)
                                  we proved ty3 g c2 t4 (THead (Flat Cast) t0 t3)

                                  H8:eq T (THead (Bind b) u (lift (S OO t5)) (THead (Flat Cast) t3 t2)
                                    .H9:(eq T t6 t4).(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                            case pr0_tau t5:T t6:T H6:pr0 t5 t6 u:T 
                               the thesis becomes 
                                     H7:eq T (THead (Flat Cast) u t5) (THead (Flat Cast) t3 t2)
                                       .H8:(eq T t6 t4).(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                suppose H7eq T (THead (Flat Cast) u t5) (THead (Flat Cast) t3 t2)
                                suppose H8eq T t6 t4
                                  (H9
                                     by (f_equal . . . . . H7)
                                     we proved 
                                        eq
                                          T
                                          <λ:T.T> CASE THead (Flat Cast) u t5 OF TSort t5 | TLRef t5 | THead   t7t7
                                          <λ:T.T> CASE THead (Flat Cast) t3 t2 OF TSort t5 | TLRef t5 | THead   t7t7

                                        eq
                                          T
                                          λe:T.<λ:T.T> CASE e OF TSort t5 | TLRef t5 | THead   t7t7
                                            THead (Flat Cast) u t5
                                          λe:T.<λ:T.T> CASE e OF TSort t5 | TLRef t5 | THead   t7t7
                                            THead (Flat Cast) t3 t2
                                  end of H9
                                  (h1
                                     (H10
                                        by (f_equal . . . . . H7)
                                        we proved 
                                           eq
                                             T
                                             <λ:T.T> CASE THead (Flat Cast) u t5 OF TSort u | TLRef u | THead  t7 t7
                                             <λ:T.T> CASE THead (Flat Cast) t3 t2 OF TSort u | TLRef u | THead  t7 t7

                                           eq
                                             T
                                             λe:T.<λ:T.T> CASE e OF TSort u | TLRef u | THead  t7 t7
                                               THead (Flat Cast) u t5
                                             λe:T.<λ:T.T> CASE e OF TSort u | TLRef u | THead  t7 t7
                                               THead (Flat Cast) t3 t2
                                     end of H10
                                     consider H10
                                     we proved 
                                        eq
                                          T
                                          <λ:T.T> CASE THead (Flat Cast) u t5 OF TSort u | TLRef u | THead  t7 t7
                                          <λ:T.T> CASE THead (Flat Cast) t3 t2 OF TSort u | TLRef u | THead  t7 t7
                                     that is equivalent to eq T u t3
                                     by (sym_eq . . . previous)
                                     we proved eq T t3 u
                                     we proceed by induction on the previous result to prove (eq T t5 t2)(eq T t6 t4)(pr0 t5 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                        case refl_equal : 
                                           the thesis becomes (eq T t5 t2)(eq T t6 t4)(pr0 t5 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                              suppose H11eq T t5 t2
                                                 by (sym_eq . . . H11)
                                                 we proved eq T t2 t5
                                                 we proceed by induction on the previous result to prove (eq T t6 t4)(pr0 t5 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                                    case refl_equal : 
                                                       the thesis becomes (eq T t6 t4)(pr0 t2 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                                          suppose H12eq T t6 t4
                                                             by (sym_eq . . . H12)
                                                             we proved eq T t4 t6
                                                             we proceed by induction on the previous result to prove (pr0 t2 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                                                case refl_equal : 
                                                                   the thesis becomes (pr0 t2 t4)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                                                      suppose H13pr0 t2 t4
                                                                         by (pr0_refl .)
                                                                         we proved pr0 t3 t3
                                                                         by (H3 . H4 . previous)
                                                                         we proved ty3 g c2 t3 t0
                                                                         by (ty3_correct . . . . previous)
                                                                         we proved ex T λt:T.ty3 g c2 t0 t
                                                                         we proceed by induction on the previous result to prove ty3 g c2 t4 (THead (Flat Cast) t0 t3)
                                                                            case ex_intro : x:T H14:ty3 g c2 t0 x 
                                                                               the thesis becomes ty3 g c2 t4 (THead (Flat Cast) t0 t3)
                                                                                  (h1
                                                                                     by (pr0_refl .)
                                                                                     we proved pr0 t3 t3
                                                                                     by (H3 . H4 . previous)
                                                                                     we proved ty3 g c2 t3 t0
                                                                                     by (ty3_cast . . . . previous . H14)
ty3 g c2 (THead (Flat Cast) t0 t3) (THead (Flat Cast) x t0)
                                                                                  end of h1
                                                                                  (h2by (H1 . H4 . H13) we proved ty3 g c2 t4 t3
                                                                                  (h3
                                                                                     by (pr0_refl .)
                                                                                     we proved pr0 t3 t3
                                                                                     by (pr0_tau . . previous .)
                                                                                     we proved pr0 (THead (Flat Cast) t0 t3) t3
                                                                                     by (pr2_free . . . previous)
                                                                                     we proved pr2 c2 (THead (Flat Cast) t0 t3) t3
                                                                                     by (pc3_pr2_x . . . previous)
pc3 c2 t3 (THead (Flat Cast) t0 t3)
                                                                                  end of h3
                                                                                  by (ty3_conv . . . . h1 . . h2 h3)
ty3 g c2 t4 (THead (Flat Cast) t0 t3)
                                                                         we proved ty3 g c2 t4 (THead (Flat Cast) t0 t3)
(pr0 t2 t4)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                                             we proved (pr0 t2 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
(eq T t6 t4)(pr0 t2 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                                 we proved (eq T t6 t4)(pr0 t5 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
(eq T t5 t2)(eq T t6 t4)(pr0 t5 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
(eq T t5 t2)(eq T t6 t4)(pr0 t5 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                  end of h1
                                  (h2
                                     consider H9
                                     we proved 
                                        eq
                                          T
                                          <λ:T.T> CASE THead (Flat Cast) u t5 OF TSort t5 | TLRef t5 | THead   t7t7
                                          <λ:T.T> CASE THead (Flat Cast) t3 t2 OF TSort t5 | TLRef t5 | THead   t7t7
eq T t5 t2
                                  end of h2
                                  by (h1 h2)
                                  we proved (eq T t6 t4)(pr0 t5 t6)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                                  by (previous H8 H6)
                                  we proved ty3 g c2 t4 (THead (Flat Cast) t0 t3)

                                  H7:eq T (THead (Flat Cast) u t5) (THead (Flat Cast) t3 t2)
                                    .H8:(eq T t6 t4).(ty3 g c2 t4 (THead (Flat Cast) t0 t3))

                            eq T (THead (Flat Cast) t3 t2) (THead (Flat Cast) t3 t2)
                              (eq T t4 t4)(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
                      end of H6
                      (h1
                         by (refl_equal . .)
eq T (THead (Flat Cast) t3 t2) (THead (Flat Cast) t3 t2)
                      end of h1
                      (h2
                         by (refl_equal . .)
eq T t4 t4
                      end of h2
                      by (H6 h1 h2)
                      we proved ty3 g c2 t4 (THead (Flat Cast) t0 t3)
c2:C.H4:(wcpr0 c c2).t4:T.H5:(pr0 (THead (Flat Cast) t3 t2) t4).(ty3 g c2 t4 (THead (Flat Cast) t0 t3))
          we proved c2:C.(wcpr0 c1 c2)t3:T.(pr0 t1 t3)(ty3 g c2 t3 t)
       we proved g:G.c1:C.t1:T.t:T.(ty3 g c1 t1 t)c2:C.(wcpr0 c1 c2)t3:T.(pr0 t1 t3)(ty3 g c2 t3 t)