DEFINITION sn3_ind()
TYPE =
       c:C
         .P:TProp
           .t:T
               .t2:T.((eq T t t2)P:Prop.P)(pr3 c t t2)(sn3 c t2)
                 (t1:T.((eq T t t1)P:Prop.P)(pr3 c t t1)(P t1))(P t)
             t:T.(sn3 c t)(P t)
BODY =
        assume cC
        assume PTProp
        suppose H
           t:T
             .t2:T.((eq T t t2)P:Prop.P)(pr3 c t t2)(sn3 c t2)
               (t1:T.((eq T t t1)P:Prop.P)(pr3 c t t1)(P t1))(P t)
          (aux) by well-founded reasoning we prove t:T.(sn3 c t)(P t)
           assume tT
           suppose H1sn3 c t
             by cases on H1 we prove P t
                case sn3_sing t1:T H2:t2:T.((eq T t1 t2)P:Prop.P)(pr3 c t1 t2)(sn3 c t2) 
                   the thesis becomes P t1
                    assume t2T
                    suppose H3(eq T t1 t2)P:Prop.P
                    suppose H4pr3 c t1 t2
                      by (H2 . H3 H4)
                      we proved sn3 c t2
                      by (aux . previous)
                      we proved P t2
                   we proved t2:T.((eq T t1 t2)P:Prop.P)(pr3 c t1 t2)(P t2)
                   by (H . H2 previous)
P t1
             we proved P t
t:T.(sn3 c t)(P t)
          done
          consider aux
          we proved t:T.(sn3 c t)(P t)
       we proved 
          c:C
            .P:TProp
              .t:T
                  .t2:T.((eq T t t2)P:Prop.P)(pr3 c t t2)(sn3 c t2)
                    (t1:T.((eq T t t1)P:Prop.P)(pr3 c t t1)(P t1))(P t)
                t:T.(sn3 c t)(P t)