DEFINITION pr3_iso_beta()
TYPE =
       v:T
         .w:T
           .t:T
             .let u1 := THead (Flat Appl) v (THead (Bind Abst) w t)
             in c:C
                    .u2:T
                      .pr3 c u1 u2
                        ((iso u1 u2)P:Prop.P)(pr3 c (THead (Bind Abbr) v t) u2)
BODY =
        assume vT
        assume wT
        assume tT
          we must prove 
                let u1 := THead (Flat Appl) v (THead (Bind Abst) w t)
                in c:C
                       .u2:T
                         .pr3 c u1 u2
                           ((iso u1 u2)P:Prop.P)(pr3 c (THead (Bind Abbr) v t) u2)
          or equivalently 
                c:C
                  .u2:T
                    .pr3 c (THead (Flat Appl) v (THead (Bind Abst) w t)) u2
                      (iso (THead (Flat Appl) v (THead (Bind Abst) w t)) u2
                             P:Prop.P
                           pr3 c (THead (Bind Abbr) v t) u2)
           assume cC
           assume u2T
           suppose Hpr3 c (THead (Flat Appl) v (THead (Bind Abst) w t)) u2
           suppose H0
              iso (THead (Flat Appl) v (THead (Bind Abst) w t)) u2
                P:Prop.P
             (H1
                by (pr3_gen_appl . . . . H)

                   or3
                     ex3_2
                       T
                       T
                       λu2:T.λt2:T.eq T u2 (THead (Flat Appl) u2 t2)
                       λu2:T.λ:T.pr3 c v u2
                       λ:T.λt2:T.pr3 c (THead (Bind Abst) w t) t2
                     ex4_4
                       T
                       T
                       T
                       T
                       λ:T.λ:T.λu2:T.λt2:T.pr3 c (THead (Bind Abbr) u2 t2) u2
                       λ:T.λ:T.λu2:T.λ:T.pr3 c v u2
                       λy1:T.λz1:T.λ:T.λ:T.pr3 c (THead (Bind Abst) w t) (THead (Bind Abst) y1 z1)
                       λ:T.λz1:T.λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t2)
                     ex6_6
                       B
                       T
                       T
                       T
                       T
                       T
                       λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                       λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c (THead (Bind Abst) w t) (THead (Bind b) y1 z1)
                       λb:B
                         .λ:T
                           .λ:T
                             .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) u2
                       λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c v u2
                       λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                       λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
             end of H1
             we proceed by induction on H1 to prove pr3 c (THead (Bind Abbr) v t) u2
                case or3_intro0 : H2:ex3_2 T T λu3:T.λt2:T.eq T u2 (THead (Flat Appl) u3 t2) λu3:T.λ:T.pr3 c v u3 λ:T.λt2:T.pr3 c (THead (Bind Abst) w t) t2 
                   the thesis becomes pr3 c (THead (Bind Abbr) v t) u2
                      we proceed by induction on H2 to prove pr3 c (THead (Bind Abbr) v t) u2
                         case ex3_2_intro : x0:T x1:T H3:eq T u2 (THead (Flat Appl) x0 x1) :pr3 c v x0 :pr3 c (THead (Bind Abst) w t) x1 
                            the thesis becomes pr3 c (THead (Bind Abbr) v t) u2
                               (H6
                                  we proceed by induction on H3 to prove 
                                     (iso
                                         THead (Flat Appl) v (THead (Bind Abst) w t)
                                         THead (Flat Appl) x0 x1)
                                       P:Prop.P
                                     case refl_equal : 
                                        the thesis becomes the hypothesis H0

                                     (iso
                                         THead (Flat Appl) v (THead (Bind Abst) w t)
                                         THead (Flat Appl) x0 x1)
                                       P:Prop.P
                               end of H6
                               by (iso_head . . . . .)
                               we proved 
                                  iso
                                    THead (Flat Appl) v (THead (Bind Abst) w t)
                                    THead (Flat Appl) x0 x1
                               by (H6 previous .)
                               we proved pr3 c (THead (Bind Abbr) v t) (THead (Flat Appl) x0 x1)
                               by (eq_ind_r . . . previous . H3)
pr3 c (THead (Bind Abbr) v t) u2
pr3 c (THead (Bind Abbr) v t) u2
                case or3_intro1 : H2:ex4_4 T T T T λ:T.λ:T.λu3:T.λt2:T.pr3 c (THead (Bind Abbr) u3 t2) u2 λ:T.λ:T.λu3:T.λ:T.pr3 c v u3 λy1:T.λz1:T.λ:T.λ:T.pr3 c (THead (Bind Abst) w t) (THead (Bind Abst) y1 z1) λ:T.λz1:T.λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t2) 
                   the thesis becomes pr3 c (THead (Bind Abbr) v t) u2
                      we proceed by induction on H2 to prove pr3 c (THead (Bind Abbr) v t) u2
                         case ex4_4_intro : x0:T x1:T x2:T x3:T H3:pr3 c (THead (Bind Abbr) x2 x3) u2 H4:pr3 c v x2 H5:pr3 c (THead (Bind Abst) w t) (THead (Bind Abst) x0 x1) H6:b:B.u:T.(pr3 (CHead c (Bind b) u) x1 x3) 
                            the thesis becomes pr3 c (THead (Bind Abbr) v t) u2
                               (H7
                                  by (pr3_gen_abst . . . . H5)

                                     ex3_2
                                       T
                                       T
                                       λu2:T.λt2:T.eq T (THead (Bind Abst) x0 x1) (THead (Bind Abst) u2 t2)
                                       λu2:T.λ:T.pr3 c w u2
                                       λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) t t2)
                               end of H7
                               we proceed by induction on H7 to prove pr3 c (THead (Bind Abbr) v t) u2
                                  case ex3_2_intro : x4:T x5:T H8:eq T (THead (Bind Abst) x0 x1) (THead (Bind Abst) x4 x5) H9:pr3 c w x4 H10:b:B.u:T.(pr3 (CHead c (Bind b) u) t x5) 
                                     the thesis becomes pr3 c (THead (Bind Abbr) v t) u2
                                        (H11
                                           by (f_equal . . . . . H8)
                                           we proved 
                                              eq
                                                T
                                                <λ:T.T> CASE THead (Bind Abst) x0 x1 OF TSort x0 | TLRef x0 | THead  t0 t0
                                                <λ:T.T> CASE THead (Bind Abst) x4 x5 OF TSort x0 | TLRef x0 | THead  t0 t0

                                              eq
                                                T
                                                λe:T.<λ:T.T> CASE e OF TSort x0 | TLRef x0 | THead  t0 t0
                                                  THead (Bind Abst) x0 x1
                                                λe:T.<λ:T.T> CASE e OF TSort x0 | TLRef x0 | THead  t0 t0
                                                  THead (Bind Abst) x4 x5
                                        end of H11
                                        (h1
                                           (H12
                                              by (f_equal . . . . . H8)
                                              we proved 
                                                 eq
                                                   T
                                                   <λ:T.T> CASE THead (Bind Abst) x0 x1 OF TSort x1 | TLRef x1 | THead   t0t0
                                                   <λ:T.T> CASE THead (Bind Abst) x4 x5 OF TSort x1 | TLRef x1 | THead   t0t0

                                                 eq
                                                   T
                                                   λe:T.<λ:T.T> CASE e OF TSort x1 | TLRef x1 | THead   t0t0
                                                     THead (Bind Abst) x0 x1
                                                   λe:T.<λ:T.T> CASE e OF TSort x1 | TLRef x1 | THead   t0t0
                                                     THead (Bind Abst) x4 x5
                                           end of H12
                                           suppose H13eq T x0 x4
                                              (H14
                                                 consider H12
                                                 we proved 
                                                    eq
                                                      T
                                                      <λ:T.T> CASE THead (Bind Abst) x0 x1 OF TSort x1 | TLRef x1 | THead   t0t0
                                                      <λ:T.T> CASE THead (Bind Abst) x4 x5 OF TSort x1 | TLRef x1 | THead   t0t0
                                                 that is equivalent to eq T x1 x5
                                                 by (eq_ind_r . . . H10 . previous)
b:B.u:T.(pr3 (CHead c (Bind b) u) t x1)
                                              end of H14
                                              (h1
                                                 by (H14 . .)
pr3 (CHead c (Bind Abbr) x2) t x1
                                              end of h1
                                              (h2
                                                 by (H6 . .)
pr3 (CHead c (Bind Abbr) x2) x1 x3
                                              end of h2
                                              by (pr3_t . . . h1 . h2)
                                              we proved pr3 (CHead c (Bind Abbr) x2) t x3
                                              by (pr3_head_12 . . . H4 . . . previous)
                                              we proved pr3 c (THead (Bind Abbr) v t) (THead (Bind Abbr) x2 x3)
                                              by (pr3_t . . . previous . H3)
                                              we proved pr3 c (THead (Bind Abbr) v t) u2
(eq T x0 x4)(pr3 c (THead (Bind Abbr) v t) u2)
                                        end of h1
                                        (h2
                                           consider H11
                                           we proved 
                                              eq
                                                T
                                                <λ:T.T> CASE THead (Bind Abst) x0 x1 OF TSort x0 | TLRef x0 | THead  t0 t0
                                                <λ:T.T> CASE THead (Bind Abst) x4 x5 OF TSort x0 | TLRef x0 | THead  t0 t0
eq T x0 x4
                                        end of h2
                                        by (h1 h2)
pr3 c (THead (Bind Abbr) v t) u2
pr3 c (THead (Bind Abbr) v t) u2
pr3 c (THead (Bind Abbr) v t) u2
                case or3_intro2 : H2:ex6_6 B T T T T T λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abstλb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c (THead (Bind Abst) w t) (THead (Bind b) y1 z1) λb:B.λ:T.λ:T.λz2:T.λu3:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u3) z2)) u2 λ:B.λ:T.λ:T.λ:T.λu3:T.λ:T.pr3 c v u3 λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2 λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2 
                   the thesis becomes pr3 c (THead (Bind Abbr) v t) u2
                      we proceed by induction on H2 to prove pr3 c (THead (Bind Abbr) v t) u2
                         case ex6_6_intro : x0:B x1:T x2:T x3:T x4:T x5:T H3:not (eq B x0 Abst) H4:pr3 c (THead (Bind Abst) w t) (THead (Bind x0) x1 x2) H5:pr3 c (THead (Bind x0) x5 (THead (Flat Appl) (lift (S OO x4) x3)) u2 :pr3 c v x4 :pr3 c x1 x5 H8:pr3 (CHead c (Bind x0) x5) x2 x3 
                            the thesis becomes pr3 c (THead (Bind Abbr) v t) u2
                               (H9
                                  by (pr3_gen_abst . . . . H4)

                                     ex3_2
                                       T
                                       T
                                       λu2:T.λt2:T.eq T (THead (Bind x0) x1 x2) (THead (Bind Abst) u2 t2)
                                       λu2:T.λ:T.pr3 c w u2
                                       λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) t t2)
                               end of H9
                               we proceed by induction on H9 to prove pr3 c (THead (Bind Abbr) v t) u2
                                  case ex3_2_intro : x6:T x7:T H10:eq T (THead (Bind x0) x1 x2) (THead (Bind Abst) x6 x7) H11:pr3 c w x6 H12:b:B.u:T.(pr3 (CHead c (Bind b) u) t x7) 
                                     the thesis becomes pr3 c (THead (Bind Abbr) v t) u2
                                        (H13
                                           by (f_equal . . . . . H10)
                                           we proved 
                                              eq
                                                B
                                                <λ:T.B>
                                                  CASE THead (Bind x0) x1 x2 OF
                                                    TSort x0
                                                  | TLRef x0
                                                  | THead k  <λ:K.B> CASE k OF Bind bb | Flat x0
                                                <λ:T.B>
                                                  CASE THead (Bind Abst) x6 x7 OF
                                                    TSort x0
                                                  | TLRef x0
                                                  | THead k  <λ:K.B> CASE k OF Bind bb | Flat x0

                                              eq
                                                B
                                                λe:T
                                                    .<λ:T.B>
                                                      CASE e OF
                                                        TSort x0
                                                      | TLRef x0
                                                      | THead k  <λ:K.B> CASE k OF Bind bb | Flat x0
                                                  THead (Bind x0) x1 x2
                                                λe:T
                                                    .<λ:T.B>
                                                      CASE e OF
                                                        TSort x0
                                                      | TLRef x0
                                                      | THead k  <λ:K.B> CASE k OF Bind bb | Flat x0
                                                  THead (Bind Abst) x6 x7
                                        end of H13
                                        (h1
                                           (H14
                                              by (f_equal . . . . . H10)
                                              we proved 
                                                 eq
                                                   T
                                                   <λ:T.T> CASE THead (Bind x0) x1 x2 OF TSort x1 | TLRef x1 | THead  t0 t0
                                                   <λ:T.T> CASE THead (Bind Abst) x6 x7 OF TSort x1 | TLRef x1 | THead  t0 t0

                                                 eq
                                                   T
                                                   λe:T.<λ:T.T> CASE e OF TSort x1 | TLRef x1 | THead  t0 t0 (THead (Bind x0) x1 x2)
                                                   λe:T.<λ:T.T> CASE e OF TSort x1 | TLRef x1 | THead  t0 t0
                                                     THead (Bind Abst) x6 x7
                                           end of H14
                                           (h1
                                              (H15
                                                 by (f_equal . . . . . H10)
                                                 we proved 
                                                    eq
                                                      T
                                                      <λ:T.T> CASE THead (Bind x0) x1 x2 OF TSort x2 | TLRef x2 | THead   t0t0
                                                      <λ:T.T> CASE THead (Bind Abst) x6 x7 OF TSort x2 | TLRef x2 | THead   t0t0

                                                    eq
                                                      T
                                                      λe:T.<λ:T.T> CASE e OF TSort x2 | TLRef x2 | THead   t0t0 (THead (Bind x0) x1 x2)
                                                      λe:T.<λ:T.T> CASE e OF TSort x2 | TLRef x2 | THead   t0t0
                                                        THead (Bind Abst) x6 x7
                                              end of H15
                                               suppose H16eq T x1 x6
                                               suppose H17eq B x0 Abst
                                                 (H22
                                                    we proceed by induction on H17 to prove not (eq B Abst Abst)
                                                       case refl_equal : 
                                                          the thesis becomes the hypothesis H3
not (eq B Abst Abst)
                                                 end of H22
                                                 (H23
                                                    by (refl_equal . .)
                                                    we proved eq B Abst Abst
                                                    by (H22 previous)
                                                    we proved False
                                                    by cases on the previous result we prove pr3 c (THead (Bind Abbr) v t) u2
pr3 c (THead (Bind Abbr) v t) u2
                                                 end of H23
                                                 consider H23
                                                 we proved pr3 c (THead (Bind Abbr) v t) u2
(eq T x1 x6)(eq B x0 Abst)(pr3 c (THead (Bind Abbr) v t) u2)
                                           end of h1
                                           (h2
                                              consider H14
                                              we proved 
                                                 eq
                                                   T
                                                   <λ:T.T> CASE THead (Bind x0) x1 x2 OF TSort x1 | TLRef x1 | THead  t0 t0
                                                   <λ:T.T> CASE THead (Bind Abst) x6 x7 OF TSort x1 | TLRef x1 | THead  t0 t0
eq T x1 x6
                                           end of h2
                                           by (h1 h2)
(eq B x0 Abst)(pr3 c (THead (Bind Abbr) v t) u2)
                                        end of h1
                                        (h2
                                           consider H13
                                           we proved 
                                              eq
                                                B
                                                <λ:T.B>
                                                  CASE THead (Bind x0) x1 x2 OF
                                                    TSort x0
                                                  | TLRef x0
                                                  | THead k  <λ:K.B> CASE k OF Bind bb | Flat x0
                                                <λ:T.B>
                                                  CASE THead (Bind Abst) x6 x7 OF
                                                    TSort x0
                                                  | TLRef x0
                                                  | THead k  <λ:K.B> CASE k OF Bind bb | Flat x0
eq B x0 Abst
                                        end of h2
                                        by (h1 h2)
pr3 c (THead (Bind Abbr) v t) u2
pr3 c (THead (Bind Abbr) v t) u2
pr3 c (THead (Bind Abbr) v t) u2
             we proved pr3 c (THead (Bind Abbr) v t) u2
          we proved 
             c:C
               .u2:T
                 .pr3 c (THead (Flat Appl) v (THead (Bind Abst) w t)) u2
                   (iso (THead (Flat Appl) v (THead (Bind Abst) w t)) u2
                          P:Prop.P
                        pr3 c (THead (Bind Abbr) v t) u2)
          that is equivalent to 
             let u1 := THead (Flat Appl) v (THead (Bind Abst) w t)
             in c:C
                    .u2:T
                      .pr3 c u1 u2
                        ((iso u1 u2)P:Prop.P)(pr3 c (THead (Bind Abbr) v t) u2)
       we proved 
          v:T
            .w:T
              .t:T
                .let u1 := THead (Flat Appl) v (THead (Bind Abst) w t)
                in c:C
                       .u2:T
                         .pr3 c u1 u2
                           ((iso u1 u2)P:Prop.P)(pr3 c (THead (Bind Abbr) v t) u2)