DEFINITION iso_gen_lref()
TYPE =
       u2:T.n1:nat.(iso (TLRef n1) u2)(ex nat λn2:nat.eq T u2 (TLRef n2))
BODY =
        assume u2T
        assume n1nat
        suppose Hiso (TLRef n1) u2
           assume yT
           suppose H0iso y u2
             we proceed by induction on H0 to prove (eq T y (TLRef n1))(ex nat λn2:nat.eq T u2 (TLRef n2))
                case iso_sort : n0:nat n2:nat 
                   the thesis becomes 
                   H1:(eq T (TSort n0) (TLRef n1)).(ex nat λn3:nat.eq T (TSort n2) (TLRef n3))
                      suppose H1eq T (TSort n0) (TLRef n1)
                         (H2
                            we proceed by induction on H1 to prove 
                               <λ:T.Prop>
                                 CASE TLRef n1 OF
                                   TSort True
                                 | TLRef False
                                 | THead   False
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE TSort n0 OF
                                      TSort True
                                    | TLRef False
                                    | THead   False
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE TSort n0 OF
                                            TSort True
                                          | TLRef False
                                          | THead   False

                               <λ:T.Prop>
                                 CASE TLRef n1 OF
                                   TSort True
                                 | TLRef False
                                 | THead   False
                         end of H2
                         consider H2
                         we proved 
                            <λ:T.Prop>
                              CASE TLRef n1 OF
                                TSort True
                              | TLRef False
                              | THead   False
                         that is equivalent to False
                         we proceed by induction on the previous result to prove ex nat λn3:nat.eq T (TSort n2) (TLRef n3)
                         we proved ex nat λn3:nat.eq T (TSort n2) (TLRef n3)

                         H1:(eq T (TSort n0) (TLRef n1)).(ex nat λn3:nat.eq T (TSort n2) (TLRef n3))
                case iso_lref : i1:nat i2:nat 
                   the thesis becomes 
                   H1:(eq T (TLRef i1) (TLRef n1)).(ex nat λn2:nat.eq T (TLRef i2) (TLRef n2))
                      suppose H1eq T (TLRef i1) (TLRef n1)
                         by (refl_equal . .)
                         we proved eq T (TLRef i2) (TLRef i2)
                         by (ex_intro . . . previous)
                         we proved ex nat λn2:nat.eq T (TLRef i2) (TLRef n2)

                         H1:(eq T (TLRef i1) (TLRef n1)).(ex nat λn2:nat.eq T (TLRef i2) (TLRef n2))
                case iso_head : v1:T v2:T t1:T t2:T k:K 
                   the thesis becomes 
                   H1:eq T (THead k v1 t1) (TLRef n1)
                     .ex nat λn2:nat.eq T (THead k v2 t2) (TLRef n2)
                      suppose H1eq T (THead k v1 t1) (TLRef n1)
                         (H2
                            we proceed by induction on H1 to prove 
                               <λ:T.Prop>
                                 CASE TLRef n1 OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE THead k v1 t1 OF
                                      TSort False
                                    | TLRef False
                                    | THead   True
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE THead k v1 t1 OF
                                            TSort False
                                          | TLRef False
                                          | THead   True

                               <λ:T.Prop>
                                 CASE TLRef n1 OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                         end of H2
                         consider H2
                         we proved 
                            <λ:T.Prop>
                              CASE TLRef n1 OF
                                TSort False
                              | TLRef False
                              | THead   True
                         that is equivalent to False
                         we proceed by induction on the previous result to prove ex nat λn2:nat.eq T (THead k v2 t2) (TLRef n2)
                         we proved ex nat λn2:nat.eq T (THead k v2 t2) (TLRef n2)

                         H1:eq T (THead k v1 t1) (TLRef n1)
                           .ex nat λn2:nat.eq T (THead k v2 t2) (TLRef n2)
             we proved (eq T y (TLRef n1))(ex nat λn2:nat.eq T u2 (TLRef n2))
          we proved 
             y:T
               .iso y u2
                 (eq T y (TLRef n1))(ex nat λn2:nat.eq T u2 (TLRef n2))
          by (insert_eq . . . . previous H)
          we proved ex nat λn2:nat.eq T u2 (TLRef n2)
       we proved u2:T.n1:nat.(iso (TLRef n1) u2)(ex nat λn2:nat.eq T u2 (TLRef n2))