DEFINITION drop1_gen_pnil()
TYPE =
       c1:C.c2:C.(drop1 PNil c1 c2)(eq C c1 c2)
BODY =
        assume c1C
        assume c2C
        suppose Hdrop1 PNil c1 c2
           assume yPList
           suppose H0drop1 y c1 c2
             we proceed by induction on H0 to prove (eq PList y PNil)(eq C c1 c2)
                case drop1_nil : c:C 
                   the thesis becomes (eq PList PNil PNil)(eq C c c)
                      suppose eq PList PNil PNil
                         by (refl_equal . .)
                         we proved eq C c c
(eq PList PNil PNil)(eq C c c)
                case drop1_cons : c3:C c4:C h:nat d:nat :drop h d c3 c4 c5:C hds:PList :drop1 hds c4 c5 
                   the thesis becomes H4:(eq PList (PCons h d hds) PNil).(eq C c3 c5)
                   () by induction hypothesis we know (eq PList hds PNil)(eq C c4 c5)
                      suppose H4eq PList (PCons h d hds) PNil
                         (H5
                            we proceed by induction on H4 to prove <λ:PList.Prop> CASE PNil OF PNilFalse | PCons   True
                               case refl_equal : 
                                  the thesis becomes <λ:PList.Prop> CASE PCons h d hds OF PNilFalse | PCons   True
                                     consider I
                                     we proved True
<λ:PList.Prop> CASE PCons h d hds OF PNilFalse | PCons   True
<λ:PList.Prop> CASE PNil OF PNilFalse | PCons   True
                         end of H5
                         consider H5
                         we proved <λ:PList.Prop> CASE PNil OF PNilFalse | PCons   True
                         that is equivalent to False
                         we proceed by induction on the previous result to prove eq C c3 c5
                         we proved eq C c3 c5
H4:(eq PList (PCons h d hds) PNil).(eq C c3 c5)
             we proved (eq PList y PNil)(eq C c1 c2)
          we proved y:PList.(drop1 y c1 c2)(eq PList y PNil)(eq C c1 c2)
          by (insert_eq . . . . previous H)
          we proved eq C c1 c2
       we proved c1:C.c2:C.(drop1 PNil c1 c2)(eq C c1 c2)