DEFINITION csubt_gen_abst()
TYPE =
       g:G
         .e1:C
           .c2:C
             .v1:T
               .csubt g (CHead e1 (Bind Abst) v1) c2
                 (or
                      ex2 C λe2:C.eq C c2 (CHead e2 (Bind Abst) v1) λe2:C.csubt g e1 e2
                      ex4_2 C T λe2:C.λv2:T.eq C c2 (CHead e2 (Bind Abbr) v2) λe2:C.λ:T.csubt g e1 e2 λ:C.λv2:T.ty3 g e1 v2 v1 λe2:C.λv2:T.ty3 g e2 v2 v1)
BODY =
        assume gG
        assume e1C
        assume c2C
        assume v1T
        suppose Hcsubt g (CHead e1 (Bind Abst) v1) c2
           assume yC
           suppose H0csubt g y c2
             we proceed by induction on H0 to prove 
                eq C y (CHead e1 (Bind Abst) v1)
                  (or
                       ex2 C λe2:C.eq C c2 (CHead e2 (Bind Abst) v1) λe2:C.csubt g e1 e2
                       ex4_2 C T λe2:C.λv2:T.eq C c2 (CHead e2 (Bind Abbr) v2) λe2:C.λ:T.csubt g e1 e2 λ:C.λv2:T.ty3 g e1 v2 v1 λe2:C.λv2:T.ty3 g e2 v2 v1)
                case csubt_sort : n:nat 
                   the thesis becomes 
                   H1:eq C (CSort n) (CHead e1 (Bind Abst) v1)
                     .or
                       ex2 C λe2:C.eq C (CSort n) (CHead e2 (Bind Abst) v1) λe2:C.csubt g e1 e2
                       ex4_2
                         C
                         T
                         λe2:C.λv2:T.eq C (CSort n) (CHead e2 (Bind Abbr) v2)
                         λe2:C.λ:T.csubt g e1 e2
                         λ:C.λv2:T.ty3 g e1 v2 v1
                         λe2:C.λv2:T.ty3 g e2 v2 v1
                      suppose H1eq C (CSort n) (CHead e1 (Bind Abst) v1)
                         (H2
                            we proceed by induction on H1 to prove 
                               <λ:C.Prop>
                                 CASE CHead e1 (Bind Abst) v1 OF
                                   CSort True
                                 | CHead   False
                               case refl_equal : 
                                  the thesis becomes <λ:C.Prop> CASE CSort n OF CSort True | CHead   False
                                     consider I
                                     we proved True
<λ:C.Prop> CASE CSort n OF CSort True | CHead   False

                               <λ:C.Prop>
                                 CASE CHead e1 (Bind Abst) v1 OF
                                   CSort True
                                 | CHead   False
                         end of H2
                         consider H2
                         we proved 
                            <λ:C.Prop>
                              CASE CHead e1 (Bind Abst) v1 OF
                                CSort True
                              | CHead   False
                         that is equivalent to False
                         we proceed by induction on the previous result to prove 
                            or
                              ex2 C λe2:C.eq C (CSort n) (CHead e2 (Bind Abst) v1) λe2:C.csubt g e1 e2
                              ex4_2
                                C
                                T
                                λe2:C.λv2:T.eq C (CSort n) (CHead e2 (Bind Abbr) v2)
                                λe2:C.λ:T.csubt g e1 e2
                                λ:C.λv2:T.ty3 g e1 v2 v1
                                λe2:C.λv2:T.ty3 g e2 v2 v1
                         we proved 
                            or
                              ex2 C λe2:C.eq C (CSort n) (CHead e2 (Bind Abst) v1) λe2:C.csubt g e1 e2
                              ex4_2
                                C
                                T
                                λe2:C.λv2:T.eq C (CSort n) (CHead e2 (Bind Abbr) v2)
                                λe2:C.λ:T.csubt g e1 e2
                                λ:C.λv2:T.ty3 g e1 v2 v1
                                λe2:C.λv2:T.ty3 g e2 v2 v1

                         H1:eq C (CSort n) (CHead e1 (Bind Abst) v1)
                           .or
                             ex2 C λe2:C.eq C (CSort n) (CHead e2 (Bind Abst) v1) λe2:C.csubt g e1 e2
                             ex4_2
                               C
                               T
                               λe2:C.λv2:T.eq C (CSort n) (CHead e2 (Bind Abbr) v2)
                               λe2:C.λ:T.csubt g e1 e2
                               λ:C.λv2:T.ty3 g e1 v2 v1
                               λe2:C.λv2:T.ty3 g e2 v2 v1
                case csubt_head : c1:C c3:C H1:csubt g c1 c3 k:K u:T 
                   the thesis becomes 
                   H3:eq C (CHead c1 k u) (CHead e1 (Bind Abst) v1)
                     .or
                       ex2 C λe2:C.eq C (CHead c3 k u) (CHead e2 (Bind Abst) v1) λe2:C.csubt g e1 e2
                       ex4_2
                         C
                         T
                         λe2:C.λv2:T.eq C (CHead c3 k u) (CHead e2 (Bind Abbr) v2)
                         λe2:C.λ:T.csubt g e1 e2
                         λ:C.λv2:T.ty3 g e1 v2 v1
                         λe2:C.λv2:T.ty3 g e2 v2 v1
                   (H2) by induction hypothesis we know 
                      eq C c1 (CHead e1 (Bind Abst) v1)
                        (or
                             ex2 C λe2:C.eq C c3 (CHead e2 (Bind Abst) v1) λe2:C.csubt g e1 e2
                             ex4_2 C T λe2:C.λv2:T.eq C c3 (CHead e2 (Bind Abbr) v2) λe2:C.λ:T.csubt g e1 e2 λ:C.λv2:T.ty3 g e1 v2 v1 λe2:C.λv2:T.ty3 g e2 v2 v1)
                      suppose H3eq C (CHead c1 k u) (CHead e1 (Bind Abst) v1)
                         (H4
                            by (f_equal . . . . . H3)
                            we proved 
                               eq
                                 C
                                 <λ:C.C> CASE CHead c1 k u OF CSort c1 | CHead c  c
                                 <λ:C.C> CASE CHead e1 (Bind Abst) v1 OF CSort c1 | CHead c  c

                               eq
                                 C
                                 λe:C.<λ:C.C> CASE e OF CSort c1 | CHead c  c (CHead c1 k u)
                                 λe:C.<λ:C.C> CASE e OF CSort c1 | CHead c  c (CHead e1 (Bind Abst) v1)
                         end of H4
                         (h1
                            (H5
                               by (f_equal . . . . . H3)
                               we proved 
                                  eq
                                    K
                                    <λ:C.K> CASE CHead c1 k u OF CSort k | CHead  k0 k0
                                    <λ:C.K> CASE CHead e1 (Bind Abst) v1 OF CSort k | CHead  k0 k0

                                  eq
                                    K
                                    λe:C.<λ:C.K> CASE e OF CSort k | CHead  k0 k0 (CHead c1 k u)
                                    λe:C.<λ:C.K> CASE e OF CSort k | CHead  k0 k0 (CHead e1 (Bind Abst) v1)
                            end of H5
                            (h1
                               (H6
                                  by (f_equal . . . . . H3)
                                  we proved 
                                     eq
                                       T
                                       <λ:C.T> CASE CHead c1 k u OF CSort u | CHead   tt
                                       <λ:C.T> CASE CHead e1 (Bind Abst) v1 OF CSort u | CHead   tt

                                     eq
                                       T
                                       λe:C.<λ:C.T> CASE e OF CSort u | CHead   tt (CHead c1 k u)
                                       λe:C.<λ:C.T> CASE e OF CSort u | CHead   tt (CHead e1 (Bind Abst) v1)
                               end of H6
                                suppose H7eq K k (Bind Abst)
                                suppose H8eq C c1 e1
                                  (h1
                                     (H10
                                        we proceed by induction on H8 to prove csubt g e1 c3
                                           case refl_equal : 
                                              the thesis becomes the hypothesis H1
csubt g e1 c3
                                     end of H10
                                     by (refl_equal . .)
                                     we proved eq C (CHead c3 (Bind Abst) v1) (CHead c3 (Bind Abst) v1)
                                     by (ex_intro2 . . . . previous H10)
                                     we proved 
                                        ex2
                                          C
                                          λe2:C.eq C (CHead c3 (Bind Abst) v1) (CHead e2 (Bind Abst) v1)
                                          λe2:C.csubt g e1 e2
                                     by (or_introl . . previous)
                                     we proved 
                                        or
                                          ex2
                                            C
                                            λe2:C.eq C (CHead c3 (Bind Abst) v1) (CHead e2 (Bind Abst) v1)
                                            λe2:C.csubt g e1 e2
                                          ex4_2
                                            C
                                            T
                                            λe2:C.λv2:T.eq C (CHead c3 (Bind Abst) v1) (CHead e2 (Bind Abbr) v2)
                                            λe2:C.λ:T.csubt g e1 e2
                                            λ:C.λv2:T.ty3 g e1 v2 v1
                                            λe2:C.λv2:T.ty3 g e2 v2 v1
                                     by (eq_ind_r . . . previous . H7)

                                        or
                                          ex2 C λe2:C.eq C (CHead c3 k v1) (CHead e2 (Bind Abst) v1) λe2:C.csubt g e1 e2
                                          ex4_2
                                            C
                                            T
                                            λe2:C.λv2:T.eq C (CHead c3 k v1) (CHead e2 (Bind Abbr) v2)
                                            λe2:C.λ:T.csubt g e1 e2
                                            λ:C.λv2:T.ty3 g e1 v2 v1
                                            λe2:C.λv2:T.ty3 g e2 v2 v1
                                  end of h1
                                  (h2
                                     consider H6
                                     we proved 
                                        eq
                                          T
                                          <λ:C.T> CASE CHead c1 k u OF CSort u | CHead   tt
                                          <λ:C.T> CASE CHead e1 (Bind Abst) v1 OF CSort u | CHead   tt
eq T u v1
                                  end of h2
                                  by (eq_ind_r . . . h1 . h2)
                                  we proved 
                                     or
                                       ex2 C λe2:C.eq C (CHead c3 k u) (CHead e2 (Bind Abst) v1) λe2:C.csubt g e1 e2
                                       ex4_2
                                         C
                                         T
                                         λe2:C.λv2:T.eq C (CHead c3 k u) (CHead e2 (Bind Abbr) v2)
                                         λe2:C.λ:T.csubt g e1 e2
                                         λ:C.λv2:T.ty3 g e1 v2 v1
                                         λe2:C.λv2:T.ty3 g e2 v2 v1

                                  eq K k (Bind Abst)
                                    (eq C c1 e1
                                         (or
                                              ex2 C λe2:C.eq C (CHead c3 k u) (CHead e2 (Bind Abst) v1) λe2:C.csubt g e1 e2
                                              ex4_2
                                                C
                                                T
                                                λe2:C.λv2:T.eq C (CHead c3 k u) (CHead e2 (Bind Abbr) v2)
                                                λe2:C.λ:T.csubt g e1 e2
                                                λ:C.λv2:T.ty3 g e1 v2 v1
                                                λe2:C.λv2:T.ty3 g e2 v2 v1))
                            end of h1
                            (h2
                               consider H5
                               we proved 
                                  eq
                                    K
                                    <λ:C.K> CASE CHead c1 k u OF CSort k | CHead  k0 k0
                                    <λ:C.K> CASE CHead e1 (Bind Abst) v1 OF CSort k | CHead  k0 k0
eq K k (Bind Abst)
                            end of h2
                            by (h1 h2)

                               eq C c1 e1
                                 (or
                                      ex2 C λe2:C.eq C (CHead c3 k u) (CHead e2 (Bind Abst) v1) λe2:C.csubt g e1 e2
                                      ex4_2
                                        C
                                        T
                                        λe2:C.λv2:T.eq C (CHead c3 k u) (CHead e2 (Bind Abbr) v2)
                                        λe2:C.λ:T.csubt g e1 e2
                                        λ:C.λv2:T.ty3 g e1 v2 v1
                                        λe2:C.λv2:T.ty3 g e2 v2 v1)
                         end of h1
                         (h2
                            consider H4
                            we proved 
                               eq
                                 C
                                 <λ:C.C> CASE CHead c1 k u OF CSort c1 | CHead c  c
                                 <λ:C.C> CASE CHead e1 (Bind Abst) v1 OF CSort c1 | CHead c  c
eq C c1 e1
                         end of h2
                         by (h1 h2)
                         we proved 
                            or
                              ex2 C λe2:C.eq C (CHead c3 k u) (CHead e2 (Bind Abst) v1) λe2:C.csubt g e1 e2
                              ex4_2
                                C
                                T
                                λe2:C.λv2:T.eq C (CHead c3 k u) (CHead e2 (Bind Abbr) v2)
                                λe2:C.λ:T.csubt g e1 e2
                                λ:C.λv2:T.ty3 g e1 v2 v1
                                λe2:C.λv2:T.ty3 g e2 v2 v1

                         H3:eq C (CHead c1 k u) (CHead e1 (Bind Abst) v1)
                           .or
                             ex2 C λe2:C.eq C (CHead c3 k u) (CHead e2 (Bind Abst) v1) λe2:C.csubt g e1 e2
                             ex4_2
                               C
                               T
                               λe2:C.λv2:T.eq C (CHead c3 k u) (CHead e2 (Bind Abbr) v2)
                               λe2:C.λ:T.csubt g e1 e2
                               λ:C.λv2:T.ty3 g e1 v2 v1
                               λe2:C.λv2:T.ty3 g e2 v2 v1
                case csubt_void : c1:C c3:C :csubt g c1 c3 b:B :not (eq B b Void) u1:T u2:T 
                   the thesis becomes 
                   H4:eq C (CHead c1 (Bind Void) u1) (CHead e1 (Bind Abst) v1)
                     .or
                       ex2
                         C
                         λe2:C.eq C (CHead c3 (Bind b) u2) (CHead e2 (Bind Abst) v1)
                         λe2:C.csubt g e1 e2
                       ex4_2
                         C
                         T
                         λe2:C.λv2:T.eq C (CHead c3 (Bind b) u2) (CHead e2 (Bind Abbr) v2)
                         λe2:C.λ:T.csubt g e1 e2
                         λ:C.λv2:T.ty3 g e1 v2 v1
                         λe2:C.λv2:T.ty3 g e2 v2 v1
                   () by induction hypothesis we know 
                      eq C c1 (CHead e1 (Bind Abst) v1)
                        (or
                             ex2 C λe2:C.eq C c3 (CHead e2 (Bind Abst) v1) λe2:C.csubt g e1 e2
                             ex4_2 C T λe2:C.λv2:T.eq C c3 (CHead e2 (Bind Abbr) v2) λe2:C.λ:T.csubt g e1 e2 λ:C.λv2:T.ty3 g e1 v2 v1 λe2:C.λv2:T.ty3 g e2 v2 v1)
                      suppose H4eq C (CHead c1 (Bind Void) u1) (CHead e1 (Bind Abst) v1)
                         (H5
                            we proceed by induction on H4 to prove 
                               <λ:C.Prop>
                                 CASE CHead e1 (Bind Abst) v1 OF
                                   CSort False
                                 | CHead  k 
                                       <λ:K.Prop>
                                         CASE k OF
                                           Bind b0<λ:B.Prop> CASE b0 OF AbbrFalse | AbstFalse | VoidTrue
                                         | Flat False
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:C.Prop>
                                    CASE CHead c1 (Bind Void) u1 OF
                                      CSort False
                                    | CHead  k 
                                          <λ:K.Prop>
                                            CASE k OF
                                              Bind b0<λ:B.Prop> CASE b0 OF AbbrFalse | AbstFalse | VoidTrue
                                            | Flat False
                                     consider I
                                     we proved True

                                        <λ:C.Prop>
                                          CASE CHead c1 (Bind Void) u1 OF
                                            CSort False
                                          | CHead  k 
                                                <λ:K.Prop>
                                                  CASE k OF
                                                    Bind b0<λ:B.Prop> CASE b0 OF AbbrFalse | AbstFalse | VoidTrue
                                                  | Flat False

                               <λ:C.Prop>
                                 CASE CHead e1 (Bind Abst) v1 OF
                                   CSort False
                                 | CHead  k 
                                       <λ:K.Prop>
                                         CASE k OF
                                           Bind b0<λ:B.Prop> CASE b0 OF AbbrFalse | AbstFalse | VoidTrue
                                         | Flat False
                         end of H5
                         consider H5
                         we proved 
                            <λ:C.Prop>
                              CASE CHead e1 (Bind Abst) v1 OF
                                CSort False
                              | CHead  k 
                                    <λ:K.Prop>
                                      CASE k OF
                                        Bind b0<λ:B.Prop> CASE b0 OF AbbrFalse | AbstFalse | VoidTrue
                                      | Flat False
                         that is equivalent to False
                         we proceed by induction on the previous result to prove 
                            or
                              ex2
                                C
                                λe2:C.eq C (CHead c3 (Bind b) u2) (CHead e2 (Bind Abst) v1)
                                λe2:C.csubt g e1 e2
                              ex4_2
                                C
                                T
                                λe2:C.λv2:T.eq C (CHead c3 (Bind b) u2) (CHead e2 (Bind Abbr) v2)
                                λe2:C.λ:T.csubt g e1 e2
                                λ:C.λv2:T.ty3 g e1 v2 v1
                                λe2:C.λv2:T.ty3 g e2 v2 v1
                         we proved 
                            or
                              ex2
                                C
                                λe2:C.eq C (CHead c3 (Bind b) u2) (CHead e2 (Bind Abst) v1)
                                λe2:C.csubt g e1 e2
                              ex4_2
                                C
                                T
                                λe2:C.λv2:T.eq C (CHead c3 (Bind b) u2) (CHead e2 (Bind Abbr) v2)
                                λe2:C.λ:T.csubt g e1 e2
                                λ:C.λv2:T.ty3 g e1 v2 v1
                                λe2:C.λv2:T.ty3 g e2 v2 v1

                         H4:eq C (CHead c1 (Bind Void) u1) (CHead e1 (Bind Abst) v1)
                           .or
                             ex2
                               C
                               λe2:C.eq C (CHead c3 (Bind b) u2) (CHead e2 (Bind Abst) v1)
                               λe2:C.csubt g e1 e2
                             ex4_2
                               C
                               T
                               λe2:C.λv2:T.eq C (CHead c3 (Bind b) u2) (CHead e2 (Bind Abbr) v2)
                               λe2:C.λ:T.csubt g e1 e2
                               λ:C.λv2:T.ty3 g e1 v2 v1
                               λe2:C.λv2:T.ty3 g e2 v2 v1
                case csubt_abst : c1:C c3:C H1:csubt g c1 c3 u:T t:T H3:ty3 g c1 u t H4:ty3 g c3 u t 
                   the thesis becomes 
                   H5:eq C (CHead c1 (Bind Abst) t) (CHead e1 (Bind Abst) v1)
                     .or
                       ex2
                         C
                         λe2:C.eq C (CHead c3 (Bind Abbr) u) (CHead e2 (Bind Abst) v1)
                         λe2:C.csubt g e1 e2
                       ex4_2
                         C
                         T
                         λe2:C.λv2:T.eq C (CHead c3 (Bind Abbr) u) (CHead e2 (Bind Abbr) v2)
                         λe2:C.λ:T.csubt g e1 e2
                         λ:C.λv2:T.ty3 g e1 v2 v1
                         λe2:C.λv2:T.ty3 g e2 v2 v1
                   (H2) by induction hypothesis we know 
                      eq C c1 (CHead e1 (Bind Abst) v1)
                        (or
                             ex2 C λe2:C.eq C c3 (CHead e2 (Bind Abst) v1) λe2:C.csubt g e1 e2
                             ex4_2 C T λe2:C.λv2:T.eq C c3 (CHead e2 (Bind Abbr) v2) λe2:C.λ:T.csubt g e1 e2 λ:C.λv2:T.ty3 g e1 v2 v1 λe2:C.λv2:T.ty3 g e2 v2 v1)
                      suppose H5eq C (CHead c1 (Bind Abst) t) (CHead e1 (Bind Abst) v1)
                         (H6
                            by (f_equal . . . . . H5)
                            we proved 
                               eq
                                 C
                                 <λ:C.C> CASE CHead c1 (Bind Abst) t OF CSort c1 | CHead c  c
                                 <λ:C.C> CASE CHead e1 (Bind Abst) v1 OF CSort c1 | CHead c  c

                               eq
                                 C
                                 λe:C.<λ:C.C> CASE e OF CSort c1 | CHead c  c (CHead c1 (Bind Abst) t)
                                 λe:C.<λ:C.C> CASE e OF CSort c1 | CHead c  c (CHead e1 (Bind Abst) v1)
                         end of H6
                         (h1
                            (H7
                               by (f_equal . . . . . H5)
                               we proved 
                                  eq
                                    T
                                    <λ:C.T> CASE CHead c1 (Bind Abst) t OF CSort t | CHead   t0t0
                                    <λ:C.T> CASE CHead e1 (Bind Abst) v1 OF CSort t | CHead   t0t0

                                  eq
                                    T
                                    λe:C.<λ:C.T> CASE e OF CSort t | CHead   t0t0 (CHead c1 (Bind Abst) t)
                                    λe:C.<λ:C.T> CASE e OF CSort t | CHead   t0t0 (CHead e1 (Bind Abst) v1)
                            end of H7
                            suppose H8eq C c1 e1
                               (H9
                                  consider H7
                                  we proved 
                                     eq
                                       T
                                       <λ:C.T> CASE CHead c1 (Bind Abst) t OF CSort t | CHead   t0t0
                                       <λ:C.T> CASE CHead e1 (Bind Abst) v1 OF CSort t | CHead   t0t0
                                  that is equivalent to eq T t v1
                                  we proceed by induction on the previous result to prove ty3 g c3 u v1
                                     case refl_equal : 
                                        the thesis becomes the hypothesis H4
ty3 g c3 u v1
                               end of H9
                               (H10
                                  consider H7
                                  we proved 
                                     eq
                                       T
                                       <λ:C.T> CASE CHead c1 (Bind Abst) t OF CSort t | CHead   t0t0
                                       <λ:C.T> CASE CHead e1 (Bind Abst) v1 OF CSort t | CHead   t0t0
                                  that is equivalent to eq T t v1
                                  we proceed by induction on the previous result to prove ty3 g c1 u v1
                                     case refl_equal : 
                                        the thesis becomes the hypothesis H3
ty3 g c1 u v1
                               end of H10
                               (H11
                                  we proceed by induction on H8 to prove ty3 g e1 u v1
                                     case refl_equal : 
                                        the thesis becomes the hypothesis H10
ty3 g e1 u v1
                               end of H11
                               (H13
                                  we proceed by induction on H8 to prove csubt g e1 c3
                                     case refl_equal : 
                                        the thesis becomes the hypothesis H1
csubt g e1 c3
                               end of H13
                               by (refl_equal . .)
                               we proved eq C (CHead c3 (Bind Abbr) u) (CHead c3 (Bind Abbr) u)
                               by (ex4_2_intro . . . . . . . . previous H13 H11 H9)
                               we proved 
                                  ex4_2
                                    C
                                    T
                                    λe2:C.λv2:T.eq C (CHead c3 (Bind Abbr) u) (CHead e2 (Bind Abbr) v2)
                                    λe2:C.λ:T.csubt g e1 e2
                                    λ:C.λv2:T.ty3 g e1 v2 v1
                                    λe2:C.λv2:T.ty3 g e2 v2 v1
                               by (or_intror . . previous)
                               we proved 
                                  or
                                    ex2
                                      C
                                      λe2:C.eq C (CHead c3 (Bind Abbr) u) (CHead e2 (Bind Abst) v1)
                                      λe2:C.csubt g e1 e2
                                    ex4_2
                                      C
                                      T
                                      λe2:C.λv2:T.eq C (CHead c3 (Bind Abbr) u) (CHead e2 (Bind Abbr) v2)
                                      λe2:C.λ:T.csubt g e1 e2
                                      λ:C.λv2:T.ty3 g e1 v2 v1
                                      λe2:C.λv2:T.ty3 g e2 v2 v1

                               eq C c1 e1
                                 (or
                                      ex2
                                        C
                                        λe2:C.eq C (CHead c3 (Bind Abbr) u) (CHead e2 (Bind Abst) v1)
                                        λe2:C.csubt g e1 e2
                                      ex4_2
                                        C
                                        T
                                        λe2:C.λv2:T.eq C (CHead c3 (Bind Abbr) u) (CHead e2 (Bind Abbr) v2)
                                        λe2:C.λ:T.csubt g e1 e2
                                        λ:C.λv2:T.ty3 g e1 v2 v1
                                        λe2:C.λv2:T.ty3 g e2 v2 v1)
                         end of h1
                         (h2
                            consider H6
                            we proved 
                               eq
                                 C
                                 <λ:C.C> CASE CHead c1 (Bind Abst) t OF CSort c1 | CHead c  c
                                 <λ:C.C> CASE CHead e1 (Bind Abst) v1 OF CSort c1 | CHead c  c
eq C c1 e1
                         end of h2
                         by (h1 h2)
                         we proved 
                            or
                              ex2
                                C
                                λe2:C.eq C (CHead c3 (Bind Abbr) u) (CHead e2 (Bind Abst) v1)
                                λe2:C.csubt g e1 e2
                              ex4_2
                                C
                                T
                                λe2:C.λv2:T.eq C (CHead c3 (Bind Abbr) u) (CHead e2 (Bind Abbr) v2)
                                λe2:C.λ:T.csubt g e1 e2
                                λ:C.λv2:T.ty3 g e1 v2 v1
                                λe2:C.λv2:T.ty3 g e2 v2 v1

                         H5:eq C (CHead c1 (Bind Abst) t) (CHead e1 (Bind Abst) v1)
                           .or
                             ex2
                               C
                               λe2:C.eq C (CHead c3 (Bind Abbr) u) (CHead e2 (Bind Abst) v1)
                               λe2:C.csubt g e1 e2
                             ex4_2
                               C
                               T
                               λe2:C.λv2:T.eq C (CHead c3 (Bind Abbr) u) (CHead e2 (Bind Abbr) v2)
                               λe2:C.λ:T.csubt g e1 e2
                               λ:C.λv2:T.ty3 g e1 v2 v1
                               λe2:C.λv2:T.ty3 g e2 v2 v1
             we proved 
                eq C y (CHead e1 (Bind Abst) v1)
                  (or
                       ex2 C λe2:C.eq C c2 (CHead e2 (Bind Abst) v1) λe2:C.csubt g e1 e2
                       ex4_2 C T λe2:C.λv2:T.eq C c2 (CHead e2 (Bind Abbr) v2) λe2:C.λ:T.csubt g e1 e2 λ:C.λv2:T.ty3 g e1 v2 v1 λe2:C.λv2:T.ty3 g e2 v2 v1)
          we proved 
             y:C
               .csubt g y c2
                 (eq C y (CHead e1 (Bind Abst) v1)
                      (or
                           ex2 C λe2:C.eq C c2 (CHead e2 (Bind Abst) v1) λe2:C.csubt g e1 e2
                           ex4_2 C T λe2:C.λv2:T.eq C c2 (CHead e2 (Bind Abbr) v2) λe2:C.λ:T.csubt g e1 e2 λ:C.λv2:T.ty3 g e1 v2 v1 λe2:C.λv2:T.ty3 g e2 v2 v1))
          by (insert_eq . . . . previous H)
          we proved 
             or
               ex2 C λe2:C.eq C c2 (CHead e2 (Bind Abst) v1) λe2:C.csubt g e1 e2
               ex4_2 C T λe2:C.λv2:T.eq C c2 (CHead e2 (Bind Abbr) v2) λe2:C.λ:T.csubt g e1 e2 λ:C.λv2:T.ty3 g e1 v2 v1 λe2:C.λv2:T.ty3 g e2 v2 v1
       we proved 
          g:G
            .e1:C
              .c2:C
                .v1:T
                  .csubt g (CHead e1 (Bind Abst) v1) c2
                    (or
                         ex2 C λe2:C.eq C c2 (CHead e2 (Bind Abst) v1) λe2:C.csubt g e1 e2
                         ex4_2 C T λe2:C.λv2:T.eq C c2 (CHead e2 (Bind Abbr) v2) λe2:C.λ:T.csubt g e1 e2 λ:C.λv2:T.ty3 g e1 v2 v1 λe2:C.λv2:T.ty3 g e2 v2 v1)