DEFINITION csubc_gen_sort_r()
TYPE =
       g:G.x:C.n:nat.(csubc g x (CSort n))(eq C x (CSort n))
BODY =
        assume gG
        assume xC
        assume nnat
        suppose Hcsubc g x (CSort n)
           assume yC
           suppose H0csubc g x y
             we proceed by induction on H0 to prove (eq C y (CSort n))(eq C x y)
                case csubc_sort : n0:nat 
                   the thesis becomes H1:(eq C (CSort n0) (CSort n)).(eq C (CSort n0) (CSort n0))
                      suppose H1eq C (CSort n0) (CSort n)
                         (H2
                            by (f_equal . . . . . H1)
                            we proved 
                               eq
                                 nat
                                 <λ:C.nat> CASE CSort n0 OF CSort n1n1 | CHead   n0
                                 <λ:C.nat> CASE CSort n OF CSort n1n1 | CHead   n0

                               eq
                                 nat
                                 λe:C.<λ:C.nat> CASE e OF CSort n1n1 | CHead   n0 (CSort n0)
                                 λe:C.<λ:C.nat> CASE e OF CSort n1n1 | CHead   n0 (CSort n)
                         end of H2
                         (h1
                            by (refl_equal . .)
eq C (CSort n) (CSort n)
                         end of h1
                         (h2
                            consider H2
                            we proved 
                               eq
                                 nat
                                 <λ:C.nat> CASE CSort n0 OF CSort n1n1 | CHead   n0
                                 <λ:C.nat> CASE CSort n OF CSort n1n1 | CHead   n0
eq nat n0 n
                         end of h2
                         by (eq_ind_r . . . h1 . h2)
                         we proved eq C (CSort n0) (CSort n0)
H1:(eq C (CSort n0) (CSort n)).(eq C (CSort n0) (CSort n0))
                case csubc_head : c1:C c2:C :csubc g c1 c2 k:K v:T 
                   the thesis becomes H3:(eq C (CHead c2 k v) (CSort n)).(eq C (CHead c1 k v) (CHead c2 k v))
                   () by induction hypothesis we know (eq C c2 (CSort n))(eq C c1 c2)
                      suppose H3eq C (CHead c2 k v) (CSort n)
                         (H4
                            we proceed by induction on H3 to prove <λ:C.Prop> CASE CSort n OF CSort False | CHead   True
                               case refl_equal : 
                                  the thesis becomes <λ:C.Prop> CASE CHead c2 k v OF CSort False | CHead   True
                                     consider I
                                     we proved True
<λ:C.Prop> CASE CHead c2 k v OF CSort False | CHead   True
<λ:C.Prop> CASE CSort n OF CSort False | CHead   True
                         end of H4
                         consider H4
                         we proved <λ:C.Prop> CASE CSort n OF CSort False | CHead   True
                         that is equivalent to False
                         we proceed by induction on the previous result to prove eq C (CHead c1 k v) (CHead c2 k v)
                         we proved eq C (CHead c1 k v) (CHead c2 k v)
H3:(eq C (CHead c2 k v) (CSort n)).(eq C (CHead c1 k v) (CHead c2 k v))
                case csubc_void : c1:C c2:C :csubc g c1 c2 b:B :not (eq B b Void) u1:T u2:T 
                   the thesis becomes 
                   H4:eq C (CHead c2 (Bind b) u2) (CSort n)
                     .eq C (CHead c1 (Bind Void) u1) (CHead c2 (Bind b) u2)
                   () by induction hypothesis we know (eq C c2 (CSort n))(eq C c1 c2)
                      suppose H4eq C (CHead c2 (Bind b) u2) (CSort n)
                         (H5
                            we proceed by induction on H4 to prove <λ:C.Prop> CASE CSort n OF CSort False | CHead   True
                               case refl_equal : 
                                  the thesis becomes <λ:C.Prop> CASE CHead c2 (Bind b) u2 OF CSort False | CHead   True
                                     consider I
                                     we proved True
<λ:C.Prop> CASE CHead c2 (Bind b) u2 OF CSort False | CHead   True
<λ:C.Prop> CASE CSort n OF CSort False | CHead   True
                         end of H5
                         consider H5
                         we proved <λ:C.Prop> CASE CSort n OF CSort False | CHead   True
                         that is equivalent to False
                         we proceed by induction on the previous result to prove eq C (CHead c1 (Bind Void) u1) (CHead c2 (Bind b) u2)
                         we proved eq C (CHead c1 (Bind Void) u1) (CHead c2 (Bind b) u2)

                         H4:eq C (CHead c2 (Bind b) u2) (CSort n)
                           .eq C (CHead c1 (Bind Void) u1) (CHead c2 (Bind b) u2)
                case csubc_abst : c1:C c2:C :csubc g c1 c2 v:T a:A :sc3 g (asucc g a) c1 v w:T :sc3 g a c2 w 
                   the thesis becomes 
                   H5:eq C (CHead c2 (Bind Abbr) w) (CSort n)
                     .eq C (CHead c1 (Bind Abst) v) (CHead c2 (Bind Abbr) w)
                   () by induction hypothesis we know (eq C c2 (CSort n))(eq C c1 c2)
                      suppose H5eq C (CHead c2 (Bind Abbr) w) (CSort n)
                         (H6
                            we proceed by induction on H5 to prove <λ:C.Prop> CASE CSort n OF CSort False | CHead   True
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:C.Prop>
                                    CASE CHead c2 (Bind Abbr) w OF
                                      CSort False
                                    | CHead   True
                                     consider I
                                     we proved True

                                        <λ:C.Prop>
                                          CASE CHead c2 (Bind Abbr) w OF
                                            CSort False
                                          | CHead   True
<λ:C.Prop> CASE CSort n OF CSort False | CHead   True
                         end of H6
                         consider H6
                         we proved <λ:C.Prop> CASE CSort n OF CSort False | CHead   True
                         that is equivalent to False
                         we proceed by induction on the previous result to prove eq C (CHead c1 (Bind Abst) v) (CHead c2 (Bind Abbr) w)
                         we proved eq C (CHead c1 (Bind Abst) v) (CHead c2 (Bind Abbr) w)

                         H5:eq C (CHead c2 (Bind Abbr) w) (CSort n)
                           .eq C (CHead c1 (Bind Abst) v) (CHead c2 (Bind Abbr) w)
             we proved (eq C y (CSort n))(eq C x y)
          we proved y:C.(csubc g x y)(eq C y (CSort n))(eq C x y)
          by (insert_eq . . . . previous H)
          we proved eq C x (CSort n)
       we proved g:G.x:C.n:nat.(csubc g x (CSort n))(eq C x (CSort n))