DEFINITION csuba_gen_abst()
TYPE =
       g:G
         .d1:C
           .c:C
             .u1:T
               .csuba g (CHead d1 (Bind Abst) u1) c
                 (or
                      ex2 C λd2:C.eq C c (CHead d2 (Bind Abst) u1) λd2:C.csuba g d1 d2
                      ex4_3
                        C
                        T
                        A
                        λd2:C.λu2:T.λ:A.eq C c (CHead d2 (Bind Abbr) u2)
                        λd2:C.λ:T.λ:A.csuba g d1 d2
                        λ:C.λ:T.λa:A.arity g d1 u1 (asucc g a)
                        λd2:C.λu2:T.λa:A.arity g d2 u2 a)
BODY =
        assume gG
        assume d1C
        assume cC
        assume u1T
        suppose Hcsuba g (CHead d1 (Bind Abst) u1) c
           assume yC
           suppose H0csuba g y c
             we proceed by induction on H0 to prove 
                eq C y (CHead d1 (Bind Abst) u1)
                  (or
                       ex2 C λd2:C.eq C c (CHead d2 (Bind Abst) u1) λd2:C.csuba g d1 d2
                       ex4_3
                         C
                         T
                         A
                         λd2:C.λu2:T.λ:A.eq C c (CHead d2 (Bind Abbr) u2)
                         λd2:C.λ:T.λ:A.csuba g d1 d2
                         λ:C.λ:T.λa:A.arity g d1 u1 (asucc g a)
                         λd2:C.λu2:T.λa:A.arity g d2 u2 a)
                case csuba_sort : n:nat 
                   the thesis becomes 
                   H1:eq C (CSort n) (CHead d1 (Bind Abst) u1)
                     .or
                       ex2 C λd2:C.eq C (CSort n) (CHead d2 (Bind Abst) u1) λd2:C.csuba g d1 d2
                       ex4_3
                         C
                         T
                         A
                         λd2:C.λu2:T.λ:A.eq C (CSort n) (CHead d2 (Bind Abbr) u2)
                         λd2:C.λ:T.λ:A.csuba g d1 d2
                         λ:C.λ:T.λa:A.arity g d1 u1 (asucc g a)
                         λd2:C.λu2:T.λa:A.arity g d2 u2 a
                      suppose H1eq C (CSort n) (CHead d1 (Bind Abst) u1)
                         (H2
                            we proceed by induction on H1 to prove 
                               <λ:C.Prop>
                                 CASE CHead d1 (Bind Abst) u1 OF
                                   CSort True
                                 | CHead   False
                               case refl_equal : 
                                  the thesis becomes <λ:C.Prop> CASE CSort n OF CSort True | CHead   False
                                     consider I
                                     we proved True
<λ:C.Prop> CASE CSort n OF CSort True | CHead   False

                               <λ:C.Prop>
                                 CASE CHead d1 (Bind Abst) u1 OF
                                   CSort True
                                 | CHead   False
                         end of H2
                         consider H2
                         we proved 
                            <λ:C.Prop>
                              CASE CHead d1 (Bind Abst) u1 OF
                                CSort True
                              | CHead   False
                         that is equivalent to False
                         we proceed by induction on the previous result to prove 
                            or
                              ex2 C λd2:C.eq C (CSort n) (CHead d2 (Bind Abst) u1) λd2:C.csuba g d1 d2
                              ex4_3
                                C
                                T
                                A
                                λd2:C.λu2:T.λ:A.eq C (CSort n) (CHead d2 (Bind Abbr) u2)
                                λd2:C.λ:T.λ:A.csuba g d1 d2
                                λ:C.λ:T.λa:A.arity g d1 u1 (asucc g a)
                                λd2:C.λu2:T.λa:A.arity g d2 u2 a
                         we proved 
                            or
                              ex2 C λd2:C.eq C (CSort n) (CHead d2 (Bind Abst) u1) λd2:C.csuba g d1 d2
                              ex4_3
                                C
                                T
                                A
                                λd2:C.λu2:T.λ:A.eq C (CSort n) (CHead d2 (Bind Abbr) u2)
                                λd2:C.λ:T.λ:A.csuba g d1 d2
                                λ:C.λ:T.λa:A.arity g d1 u1 (asucc g a)
                                λd2:C.λu2:T.λa:A.arity g d2 u2 a

                         H1:eq C (CSort n) (CHead d1 (Bind Abst) u1)
                           .or
                             ex2 C λd2:C.eq C (CSort n) (CHead d2 (Bind Abst) u1) λd2:C.csuba g d1 d2
                             ex4_3
                               C
                               T
                               A
                               λd2:C.λu2:T.λ:A.eq C (CSort n) (CHead d2 (Bind Abbr) u2)
                               λd2:C.λ:T.λ:A.csuba g d1 d2
                               λ:C.λ:T.λa:A.arity g d1 u1 (asucc g a)
                               λd2:C.λu2:T.λa:A.arity g d2 u2 a
                case csuba_head : c1:C c2:C H1:csuba g c1 c2 k:K u:T 
                   the thesis becomes 
                   H3:eq C (CHead c1 k u) (CHead d1 (Bind Abst) u1)
                     .or
                       ex2 C λd2:C.eq C (CHead c2 k u) (CHead d2 (Bind Abst) u1) λd2:C.csuba g d1 d2
                       ex4_3
                         C
                         T
                         A
                         λd2:C.λu2:T.λ:A.eq C (CHead c2 k u) (CHead d2 (Bind Abbr) u2)
                         λd2:C.λ:T.λ:A.csuba g d1 d2
                         λ:C.λ:T.λa:A.arity g d1 u1 (asucc g a)
                         λd2:C.λu2:T.λa:A.arity g d2 u2 a
                   (H2) by induction hypothesis we know 
                      eq C c1 (CHead d1 (Bind Abst) u1)
                        (or
                             ex2 C λd2:C.eq C c2 (CHead d2 (Bind Abst) u1) λd2:C.csuba g d1 d2
                             ex4_3
                               C
                               T
                               A
                               λd2:C.λu2:T.λ:A.eq C c2 (CHead d2 (Bind Abbr) u2)
                               λd2:C.λ:T.λ:A.csuba g d1 d2
                               λ:C.λ:T.λa:A.arity g d1 u1 (asucc g a)
                               λd2:C.λu2:T.λa:A.arity g d2 u2 a)
                      suppose H3eq C (CHead c1 k u) (CHead d1 (Bind Abst) u1)
                         (H4
                            by (f_equal . . . . . H3)
                            we proved 
                               eq
                                 C
                                 <λ:C.C> CASE CHead c1 k u OF CSort c1 | CHead c0  c0
                                 <λ:C.C> CASE CHead d1 (Bind Abst) u1 OF CSort c1 | CHead c0  c0

                               eq
                                 C
                                 λe:C.<λ:C.C> CASE e OF CSort c1 | CHead c0  c0 (CHead c1 k u)
                                 λe:C.<λ:C.C> CASE e OF CSort c1 | CHead c0  c0 (CHead d1 (Bind Abst) u1)
                         end of H4
                         (h1
                            (H5
                               by (f_equal . . . . . H3)
                               we proved 
                                  eq
                                    K
                                    <λ:C.K> CASE CHead c1 k u OF CSort k | CHead  k0 k0
                                    <λ:C.K> CASE CHead d1 (Bind Abst) u1 OF CSort k | CHead  k0 k0

                                  eq
                                    K
                                    λe:C.<λ:C.K> CASE e OF CSort k | CHead  k0 k0 (CHead c1 k u)
                                    λe:C.<λ:C.K> CASE e OF CSort k | CHead  k0 k0 (CHead d1 (Bind Abst) u1)
                            end of H5
                            (h1
                               (H6
                                  by (f_equal . . . . . H3)
                                  we proved 
                                     eq
                                       T
                                       <λ:C.T> CASE CHead c1 k u OF CSort u | CHead   tt
                                       <λ:C.T> CASE CHead d1 (Bind Abst) u1 OF CSort u | CHead   tt

                                     eq
                                       T
                                       λe:C.<λ:C.T> CASE e OF CSort u | CHead   tt (CHead c1 k u)
                                       λe:C.<λ:C.T> CASE e OF CSort u | CHead   tt (CHead d1 (Bind Abst) u1)
                               end of H6
                                suppose H7eq K k (Bind Abst)
                                suppose H8eq C c1 d1
                                  (h1
                                     (H10
                                        we proceed by induction on H8 to prove csuba g d1 c2
                                           case refl_equal : 
                                              the thesis becomes the hypothesis H1
csuba g d1 c2
                                     end of H10
                                     by (refl_equal . .)
                                     we proved eq C (CHead c2 (Bind Abst) u1) (CHead c2 (Bind Abst) u1)
                                     by (ex_intro2 . . . . previous H10)
                                     we proved 
                                        ex2
                                          C
                                          λd2:C.eq C (CHead c2 (Bind Abst) u1) (CHead d2 (Bind Abst) u1)
                                          λd2:C.csuba g d1 d2
                                     by (or_introl . . previous)
                                     we proved 
                                        or
                                          ex2
                                            C
                                            λd2:C.eq C (CHead c2 (Bind Abst) u1) (CHead d2 (Bind Abst) u1)
                                            λd2:C.csuba g d1 d2
                                          ex4_3
                                            C
                                            T
                                            A
                                            λd2:C.λu2:T.λ:A.eq C (CHead c2 (Bind Abst) u1) (CHead d2 (Bind Abbr) u2)
                                            λd2:C.λ:T.λ:A.csuba g d1 d2
                                            λ:C.λ:T.λa:A.arity g d1 u1 (asucc g a)
                                            λd2:C.λu2:T.λa:A.arity g d2 u2 a
                                     by (eq_ind_r . . . previous . H7)

                                        or
                                          ex2 C λd2:C.eq C (CHead c2 k u1) (CHead d2 (Bind Abst) u1) λd2:C.csuba g d1 d2
                                          ex4_3
                                            C
                                            T
                                            A
                                            λd2:C.λu2:T.λ:A.eq C (CHead c2 k u1) (CHead d2 (Bind Abbr) u2)
                                            λd2:C.λ:T.λ:A.csuba g d1 d2
                                            λ:C.λ:T.λa:A.arity g d1 u1 (asucc g a)
                                            λd2:C.λu2:T.λa:A.arity g d2 u2 a
                                  end of h1
                                  (h2
                                     consider H6
                                     we proved 
                                        eq
                                          T
                                          <λ:C.T> CASE CHead c1 k u OF CSort u | CHead   tt
                                          <λ:C.T> CASE CHead d1 (Bind Abst) u1 OF CSort u | CHead   tt
eq T u u1
                                  end of h2
                                  by (eq_ind_r . . . h1 . h2)
                                  we proved 
                                     or
                                       ex2 C λd2:C.eq C (CHead c2 k u) (CHead d2 (Bind Abst) u1) λd2:C.csuba g d1 d2
                                       ex4_3
                                         C
                                         T
                                         A
                                         λd2:C.λu2:T.λ:A.eq C (CHead c2 k u) (CHead d2 (Bind Abbr) u2)
                                         λd2:C.λ:T.λ:A.csuba g d1 d2
                                         λ:C.λ:T.λa:A.arity g d1 u1 (asucc g a)
                                         λd2:C.λu2:T.λa:A.arity g d2 u2 a

                                  eq K k (Bind Abst)
                                    (eq C c1 d1
                                         (or
                                              ex2 C λd2:C.eq C (CHead c2 k u) (CHead d2 (Bind Abst) u1) λd2:C.csuba g d1 d2
                                              ex4_3
                                                C
                                                T
                                                A
                                                λd2:C.λu2:T.λ:A.eq C (CHead c2 k u) (CHead d2 (Bind Abbr) u2)
                                                λd2:C.λ:T.λ:A.csuba g d1 d2
                                                λ:C.λ:T.λa:A.arity g d1 u1 (asucc g a)
                                                λd2:C.λu2:T.λa:A.arity g d2 u2 a))
                            end of h1
                            (h2
                               consider H5
                               we proved 
                                  eq
                                    K
                                    <λ:C.K> CASE CHead c1 k u OF CSort k | CHead  k0 k0
                                    <λ:C.K> CASE CHead d1 (Bind Abst) u1 OF CSort k | CHead  k0 k0
eq K k (Bind Abst)
                            end of h2
                            by (h1 h2)

                               eq C c1 d1
                                 (or
                                      ex2 C λd2:C.eq C (CHead c2 k u) (CHead d2 (Bind Abst) u1) λd2:C.csuba g d1 d2
                                      ex4_3
                                        C
                                        T
                                        A
                                        λd2:C.λu2:T.λ:A.eq C (CHead c2 k u) (CHead d2 (Bind Abbr) u2)
                                        λd2:C.λ:T.λ:A.csuba g d1 d2
                                        λ:C.λ:T.λa:A.arity g d1 u1 (asucc g a)
                                        λd2:C.λu2:T.λa:A.arity g d2 u2 a)
                         end of h1
                         (h2
                            consider H4
                            we proved 
                               eq
                                 C
                                 <λ:C.C> CASE CHead c1 k u OF CSort c1 | CHead c0  c0
                                 <λ:C.C> CASE CHead d1 (Bind Abst) u1 OF CSort c1 | CHead c0  c0
eq C c1 d1
                         end of h2
                         by (h1 h2)
                         we proved 
                            or
                              ex2 C λd2:C.eq C (CHead c2 k u) (CHead d2 (Bind Abst) u1) λd2:C.csuba g d1 d2
                              ex4_3
                                C
                                T
                                A
                                λd2:C.λu2:T.λ:A.eq C (CHead c2 k u) (CHead d2 (Bind Abbr) u2)
                                λd2:C.λ:T.λ:A.csuba g d1 d2
                                λ:C.λ:T.λa:A.arity g d1 u1 (asucc g a)
                                λd2:C.λu2:T.λa:A.arity g d2 u2 a

                         H3:eq C (CHead c1 k u) (CHead d1 (Bind Abst) u1)
                           .or
                             ex2 C λd2:C.eq C (CHead c2 k u) (CHead d2 (Bind Abst) u1) λd2:C.csuba g d1 d2
                             ex4_3
                               C
                               T
                               A
                               λd2:C.λu2:T.λ:A.eq C (CHead c2 k u) (CHead d2 (Bind Abbr) u2)
                               λd2:C.λ:T.λ:A.csuba g d1 d2
                               λ:C.λ:T.λa:A.arity g d1 u1 (asucc g a)
                               λd2:C.λu2:T.λa:A.arity g d2 u2 a
                case csuba_void : c1:C c2:C :csuba g c1 c2 b:B :not (eq B b Void) u0:T u2:T 
                   the thesis becomes 
                   H4:eq C (CHead c1 (Bind Void) u0) (CHead d1 (Bind Abst) u1)
                     .or
                       ex2
                         C
                         λd2:C.eq C (CHead c2 (Bind b) u2) (CHead d2 (Bind Abst) u1)
                         λd2:C.csuba g d1 d2
                       ex4_3
                         C
                         T
                         A
                         λd2:C.λu3:T.λ:A.eq C (CHead c2 (Bind b) u2) (CHead d2 (Bind Abbr) u3)
                         λd2:C.λ:T.λ:A.csuba g d1 d2
                         λ:C.λ:T.λa:A.arity g d1 u1 (asucc g a)
                         λd2:C.λu3:T.λa:A.arity g d2 u3 a
                   () by induction hypothesis we know 
                      eq C c1 (CHead d1 (Bind Abst) u1)
                        (or
                             ex2 C λd2:C.eq C c2 (CHead d2 (Bind Abst) u1) λd2:C.csuba g d1 d2
                             ex4_3
                               C
                               T
                               A
                               λd2:C.λu2:T.λ:A.eq C c2 (CHead d2 (Bind Abbr) u2)
                               λd2:C.λ:T.λ:A.csuba g d1 d2
                               λ:C.λ:T.λa:A.arity g d1 u1 (asucc g a)
                               λd2:C.λu2:T.λa:A.arity g d2 u2 a)
                      suppose H4eq C (CHead c1 (Bind Void) u0) (CHead d1 (Bind Abst) u1)
                         (H5
                            we proceed by induction on H4 to prove 
                               <λ:C.Prop>
                                 CASE CHead d1 (Bind Abst) u1 OF
                                   CSort False
                                 | CHead  k 
                                       <λ:K.Prop>
                                         CASE k OF
                                           Bind b0<λ:B.Prop> CASE b0 OF AbbrFalse | AbstFalse | VoidTrue
                                         | Flat False
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:C.Prop>
                                    CASE CHead c1 (Bind Void) u0 OF
                                      CSort False
                                    | CHead  k 
                                          <λ:K.Prop>
                                            CASE k OF
                                              Bind b0<λ:B.Prop> CASE b0 OF AbbrFalse | AbstFalse | VoidTrue
                                            | Flat False
                                     consider I
                                     we proved True

                                        <λ:C.Prop>
                                          CASE CHead c1 (Bind Void) u0 OF
                                            CSort False
                                          | CHead  k 
                                                <λ:K.Prop>
                                                  CASE k OF
                                                    Bind b0<λ:B.Prop> CASE b0 OF AbbrFalse | AbstFalse | VoidTrue
                                                  | Flat False

                               <λ:C.Prop>
                                 CASE CHead d1 (Bind Abst) u1 OF
                                   CSort False
                                 | CHead  k 
                                       <λ:K.Prop>
                                         CASE k OF
                                           Bind b0<λ:B.Prop> CASE b0 OF AbbrFalse | AbstFalse | VoidTrue
                                         | Flat False
                         end of H5
                         consider H5
                         we proved 
                            <λ:C.Prop>
                              CASE CHead d1 (Bind Abst) u1 OF
                                CSort False
                              | CHead  k 
                                    <λ:K.Prop>
                                      CASE k OF
                                        Bind b0<λ:B.Prop> CASE b0 OF AbbrFalse | AbstFalse | VoidTrue
                                      | Flat False
                         that is equivalent to False
                         we proceed by induction on the previous result to prove 
                            or
                              ex2
                                C
                                λd2:C.eq C (CHead c2 (Bind b) u2) (CHead d2 (Bind Abst) u1)
                                λd2:C.csuba g d1 d2
                              ex4_3
                                C
                                T
                                A
                                λd2:C.λu3:T.λ:A.eq C (CHead c2 (Bind b) u2) (CHead d2 (Bind Abbr) u3)
                                λd2:C.λ:T.λ:A.csuba g d1 d2
                                λ:C.λ:T.λa:A.arity g d1 u1 (asucc g a)
                                λd2:C.λu3:T.λa:A.arity g d2 u3 a
                         we proved 
                            or
                              ex2
                                C
                                λd2:C.eq C (CHead c2 (Bind b) u2) (CHead d2 (Bind Abst) u1)
                                λd2:C.csuba g d1 d2
                              ex4_3
                                C
                                T
                                A
                                λd2:C.λu3:T.λ:A.eq C (CHead c2 (Bind b) u2) (CHead d2 (Bind Abbr) u3)
                                λd2:C.λ:T.λ:A.csuba g d1 d2
                                λ:C.λ:T.λa:A.arity g d1 u1 (asucc g a)
                                λd2:C.λu3:T.λa:A.arity g d2 u3 a

                         H4:eq C (CHead c1 (Bind Void) u0) (CHead d1 (Bind Abst) u1)
                           .or
                             ex2
                               C
                               λd2:C.eq C (CHead c2 (Bind b) u2) (CHead d2 (Bind Abst) u1)
                               λd2:C.csuba g d1 d2
                             ex4_3
                               C
                               T
                               A
                               λd2:C.λu3:T.λ:A.eq C (CHead c2 (Bind b) u2) (CHead d2 (Bind Abbr) u3)
                               λd2:C.λ:T.λ:A.csuba g d1 d2
                               λ:C.λ:T.λa:A.arity g d1 u1 (asucc g a)
                               λd2:C.λu3:T.λa:A.arity g d2 u3 a
                case csuba_abst : c1:C c2:C H1:csuba g c1 c2 t:T a:A H3:arity g c1 t (asucc g a) u:T H4:arity g c2 u a 
                   the thesis becomes 
                   H5:eq C (CHead c1 (Bind Abst) t) (CHead d1 (Bind Abst) u1)
                     .or
                       ex2
                         C
                         λd2:C.eq C (CHead c2 (Bind Abbr) u) (CHead d2 (Bind Abst) u1)
                         λd2:C.csuba g d1 d2
                       ex4_3
                         C
                         T
                         A
                         λd2:C.λu2:T.λ:A.eq C (CHead c2 (Bind Abbr) u) (CHead d2 (Bind Abbr) u2)
                         λd2:C.λ:T.λ:A.csuba g d1 d2
                         λ:C.λ:T.λa0:A.arity g d1 u1 (asucc g a0)
                         λd2:C.λu2:T.λa0:A.arity g d2 u2 a0
                   (H2) by induction hypothesis we know 
                      eq C c1 (CHead d1 (Bind Abst) u1)
                        (or
                             ex2 C λd2:C.eq C c2 (CHead d2 (Bind Abst) u1) λd2:C.csuba g d1 d2
                             ex4_3
                               C
                               T
                               A
                               λd2:C.λu2:T.λ:A.eq C c2 (CHead d2 (Bind Abbr) u2)
                               λd2:C.λ:T.λ:A.csuba g d1 d2
                               λ:C.λ:T.λa:A.arity g d1 u1 (asucc g a)
                               λd2:C.λu2:T.λa:A.arity g d2 u2 a)
                      suppose H5eq C (CHead c1 (Bind Abst) t) (CHead d1 (Bind Abst) u1)
                         (H6
                            by (f_equal . . . . . H5)
                            we proved 
                               eq
                                 C
                                 <λ:C.C> CASE CHead c1 (Bind Abst) t OF CSort c1 | CHead c0  c0
                                 <λ:C.C> CASE CHead d1 (Bind Abst) u1 OF CSort c1 | CHead c0  c0

                               eq
                                 C
                                 λe:C.<λ:C.C> CASE e OF CSort c1 | CHead c0  c0 (CHead c1 (Bind Abst) t)
                                 λe:C.<λ:C.C> CASE e OF CSort c1 | CHead c0  c0 (CHead d1 (Bind Abst) u1)
                         end of H6
                         (h1
                            (H7
                               by (f_equal . . . . . H5)
                               we proved 
                                  eq
                                    T
                                    <λ:C.T> CASE CHead c1 (Bind Abst) t OF CSort t | CHead   t0t0
                                    <λ:C.T> CASE CHead d1 (Bind Abst) u1 OF CSort t | CHead   t0t0

                                  eq
                                    T
                                    λe:C.<λ:C.T> CASE e OF CSort t | CHead   t0t0 (CHead c1 (Bind Abst) t)
                                    λe:C.<λ:C.T> CASE e OF CSort t | CHead   t0t0 (CHead d1 (Bind Abst) u1)
                            end of H7
                            suppose H8eq C c1 d1
                               (H9
                                  consider H7
                                  we proved 
                                     eq
                                       T
                                       <λ:C.T> CASE CHead c1 (Bind Abst) t OF CSort t | CHead   t0t0
                                       <λ:C.T> CASE CHead d1 (Bind Abst) u1 OF CSort t | CHead   t0t0
                                  that is equivalent to eq T t u1
                                  we proceed by induction on the previous result to prove arity g c1 u1 (asucc g a)
                                     case refl_equal : 
                                        the thesis becomes the hypothesis H3
arity g c1 u1 (asucc g a)
                               end of H9
                               (H10
                                  we proceed by induction on H8 to prove arity g d1 u1 (asucc g a)
                                     case refl_equal : 
                                        the thesis becomes the hypothesis H9
arity g d1 u1 (asucc g a)
                               end of H10
                               (H12
                                  we proceed by induction on H8 to prove csuba g d1 c2
                                     case refl_equal : 
                                        the thesis becomes the hypothesis H1
csuba g d1 c2
                               end of H12
                               by (refl_equal . .)
                               we proved eq C (CHead c2 (Bind Abbr) u) (CHead c2 (Bind Abbr) u)
                               by (ex4_3_intro . . . . . . . . . . previous H12 H10 H4)
                               we proved 
                                  ex4_3
                                    C
                                    T
                                    A
                                    λd2:C.λu2:T.λ:A.eq C (CHead c2 (Bind Abbr) u) (CHead d2 (Bind Abbr) u2)
                                    λd2:C.λ:T.λ:A.csuba g d1 d2
                                    λ:C.λ:T.λa0:A.arity g d1 u1 (asucc g a0)
                                    λd2:C.λu2:T.λa0:A.arity g d2 u2 a0
                               by (or_intror . . previous)
                               we proved 
                                  or
                                    ex2
                                      C
                                      λd2:C.eq C (CHead c2 (Bind Abbr) u) (CHead d2 (Bind Abst) u1)
                                      λd2:C.csuba g d1 d2
                                    ex4_3
                                      C
                                      T
                                      A
                                      λd2:C.λu2:T.λ:A.eq C (CHead c2 (Bind Abbr) u) (CHead d2 (Bind Abbr) u2)
                                      λd2:C.λ:T.λ:A.csuba g d1 d2
                                      λ:C.λ:T.λa0:A.arity g d1 u1 (asucc g a0)
                                      λd2:C.λu2:T.λa0:A.arity g d2 u2 a0

                               eq C c1 d1
                                 (or
                                      ex2
                                        C
                                        λd2:C.eq C (CHead c2 (Bind Abbr) u) (CHead d2 (Bind Abst) u1)
                                        λd2:C.csuba g d1 d2
                                      ex4_3
                                        C
                                        T
                                        A
                                        λd2:C.λu2:T.λ:A.eq C (CHead c2 (Bind Abbr) u) (CHead d2 (Bind Abbr) u2)
                                        λd2:C.λ:T.λ:A.csuba g d1 d2
                                        λ:C.λ:T.λa0:A.arity g d1 u1 (asucc g a0)
                                        λd2:C.λu2:T.λa0:A.arity g d2 u2 a0)
                         end of h1
                         (h2
                            consider H6
                            we proved 
                               eq
                                 C
                                 <λ:C.C> CASE CHead c1 (Bind Abst) t OF CSort c1 | CHead c0  c0
                                 <λ:C.C> CASE CHead d1 (Bind Abst) u1 OF CSort c1 | CHead c0  c0
eq C c1 d1
                         end of h2
                         by (h1 h2)
                         we proved 
                            or
                              ex2
                                C
                                λd2:C.eq C (CHead c2 (Bind Abbr) u) (CHead d2 (Bind Abst) u1)
                                λd2:C.csuba g d1 d2
                              ex4_3
                                C
                                T
                                A
                                λd2:C.λu2:T.λ:A.eq C (CHead c2 (Bind Abbr) u) (CHead d2 (Bind Abbr) u2)
                                λd2:C.λ:T.λ:A.csuba g d1 d2
                                λ:C.λ:T.λa0:A.arity g d1 u1 (asucc g a0)
                                λd2:C.λu2:T.λa0:A.arity g d2 u2 a0

                         H5:eq C (CHead c1 (Bind Abst) t) (CHead d1 (Bind Abst) u1)
                           .or
                             ex2
                               C
                               λd2:C.eq C (CHead c2 (Bind Abbr) u) (CHead d2 (Bind Abst) u1)
                               λd2:C.csuba g d1 d2
                             ex4_3
                               C
                               T
                               A
                               λd2:C.λu2:T.λ:A.eq C (CHead c2 (Bind Abbr) u) (CHead d2 (Bind Abbr) u2)
                               λd2:C.λ:T.λ:A.csuba g d1 d2
                               λ:C.λ:T.λa0:A.arity g d1 u1 (asucc g a0)
                               λd2:C.λu2:T.λa0:A.arity g d2 u2 a0
             we proved 
                eq C y (CHead d1 (Bind Abst) u1)
                  (or
                       ex2 C λd2:C.eq C c (CHead d2 (Bind Abst) u1) λd2:C.csuba g d1 d2
                       ex4_3
                         C
                         T
                         A
                         λd2:C.λu2:T.λ:A.eq C c (CHead d2 (Bind Abbr) u2)
                         λd2:C.λ:T.λ:A.csuba g d1 d2
                         λ:C.λ:T.λa:A.arity g d1 u1 (asucc g a)
                         λd2:C.λu2:T.λa:A.arity g d2 u2 a)
          we proved 
             y:C
               .csuba g y c
                 (eq C y (CHead d1 (Bind Abst) u1)
                      (or
                           ex2 C λd2:C.eq C c (CHead d2 (Bind Abst) u1) λd2:C.csuba g d1 d2
                           ex4_3
                             C
                             T
                             A
                             λd2:C.λu2:T.λ:A.eq C c (CHead d2 (Bind Abbr) u2)
                             λd2:C.λ:T.λ:A.csuba g d1 d2
                             λ:C.λ:T.λa:A.arity g d1 u1 (asucc g a)
                             λd2:C.λu2:T.λa:A.arity g d2 u2 a))
          by (insert_eq . . . . previous H)
          we proved 
             or
               ex2 C λd2:C.eq C c (CHead d2 (Bind Abst) u1) λd2:C.csuba g d1 d2
               ex4_3
                 C
                 T
                 A
                 λd2:C.λu2:T.λ:A.eq C c (CHead d2 (Bind Abbr) u2)
                 λd2:C.λ:T.λ:A.csuba g d1 d2
                 λ:C.λ:T.λa:A.arity g d1 u1 (asucc g a)
                 λd2:C.λu2:T.λa:A.arity g d2 u2 a
       we proved 
          g:G
            .d1:C
              .c:C
                .u1:T
                  .csuba g (CHead d1 (Bind Abst) u1) c
                    (or
                         ex2 C λd2:C.eq C c (CHead d2 (Bind Abst) u1) λd2:C.csuba g d1 d2
                         ex4_3
                           C
                           T
                           A
                           λd2:C.λu2:T.λ:A.eq C c (CHead d2 (Bind Abbr) u2)
                           λd2:C.λ:T.λ:A.csuba g d1 d2
                           λ:C.λ:T.λa:A.arity g d1 u1 (asucc g a)
                           λd2:C.λu2:T.λa:A.arity g d2 u2 a)