DEFINITION not_void_abst()
TYPE =
       not (eq B Void Abst)
BODY =
       we must prove not (eq B Void Abst)
       or equivalently (eq B Void Abst)False
       suppose Heq B Void Abst
          (H0
             we proceed by induction on H to prove <λ:B.Prop> CASE Abst OF AbbrFalse | AbstFalse | VoidTrue
                case refl_equal : 
                   the thesis becomes <λ:B.Prop> CASE Void OF AbbrFalse | AbstFalse | VoidTrue
                      consider I
                      we proved True
<λ:B.Prop> CASE Void OF AbbrFalse | AbstFalse | VoidTrue
<λ:B.Prop> CASE Abst OF AbbrFalse | AbstFalse | VoidTrue
          end of H0
          consider H0
          we proved <λ:B.Prop> CASE Abst OF AbbrFalse | AbstFalse | VoidTrue
          that is equivalent to False
          we proceed by induction on the previous result to prove False
          we proved False
       we proved (eq B Void Abst)False
       that is equivalent to not (eq B Void Abst)