DEFINITION trans_eq()
TYPE =
∀A:Set.∀x:A.∀y:A.∀z:A.(eq A x y)→(eq A y z)→(eq A x z)
BODY =
assume A: Set
assume x: A
assume y: A
assume z: A
suppose H: eq A x y
suppose H0: eq A y z
we proceed by induction on H0 to prove eq A x z
case refl_equal : ⇒
the thesis becomes the hypothesis H
we proved eq A x z
we proved ∀A:Set.∀x:A.∀y:A.∀z:A.(eq A x y)→(eq A y z)→(eq A x z)