DEFINITION sym_not_eq()
TYPE =
∀A:Set.∀x:A.∀y:A.(not (eq A x y))→(not (eq A y x))
BODY =
assume A: Set
assume x: A
assume y: A
suppose h1: not (eq A x y)
we must prove not (eq A y x)
or equivalently (eq A y x)→False
suppose h2: eq A y x
we proceed by induction on h2 to prove eq A x y
case refl_equal : ⇒
the thesis becomes eq A y y
by (refl_equal . .)
eq A y y
we proved eq A x y
by (h1 previous)
we proved False
we proved (eq A y x)→False
that is equivalent to not (eq A y x)
we proved ∀A:Set.∀x:A.∀y:A.(not (eq A x y))→(not (eq A y x))