DEFINITION sym_eq()
TYPE =
∀A:Set.∀x:A.∀y:A.(eq A x y)→(eq A y x)
BODY =
assume A: Set
assume x: A
assume y: A
suppose H: eq A x y
we proceed by induction on H to prove eq A y x
case refl_equal : ⇒
the thesis becomes eq A x x
by (refl_equal . .)
eq A x x
we proved eq A y x
we proved ∀A:Set.∀x:A.∀y:A.(eq A x y)→(eq A y x)