DEFINITION simpl_lt_plus_l()
TYPE =
∀n:nat.∀m:nat.∀p:nat.(lt (plus p n) (plus p m))→(lt n m)
BODY =
assume n: nat
assume m: nat
assume p: nat
we proceed by induction on p to prove (lt (plus p n) (plus p m))→(lt n m)
case O : ⇒
the thesis becomes (lt (plus O n) (plus O m))→(lt n m)
we must prove (lt (plus O n) (plus O m))→(lt n m)
or equivalently (lt n m)→(lt n m)
suppose H: lt n m
consider H
we proved (lt n m)→(lt n m)
(lt (plus O n) (plus O m))→(lt n m)
case S : p0:nat ⇒
the thesis becomes (lt (plus (S p0) n) (plus (S p0) m))→(lt n m)
(IHp) by induction hypothesis we know (lt (plus p0 n) (plus p0 m))→(lt n m)
we must prove (lt (plus (S p0) n) (plus (S p0) m))→(lt n m)
or equivalently (lt (S (plus p0 n)) (S (plus p0 m)))→(lt n m)
suppose H: lt (S (plus p0 n)) (S (plus p0 m))
consider H
we proved lt (S (plus p0 n)) (S (plus p0 m))
that is equivalent to le (S (S (plus p0 n))) (S (plus p0 m))
by (le_S_n . . previous)
we proved le (S (plus p0 n)) (plus p0 m)
that is equivalent to lt (plus p0 n) (plus p0 m)
by (IHp previous)
we proved lt n m
we proved (lt (S (plus p0 n)) (S (plus p0 m)))→(lt n m)
(lt (plus (S p0) n) (plus (S p0) m))→(lt n m)
we proved (lt (plus p n) (plus p m))→(lt n m)
we proved ∀n:nat.∀m:nat.∀p:nat.(lt (plus p n) (plus p m))→(lt n m)