DEFINITION simpl_le_plus_l()
TYPE =
∀p:nat.∀n:nat.∀m:nat.(le (plus p n) (plus p m))→(le n m)
BODY =
assume p: nat
we proceed by induction on p to prove ∀n0:nat.∀m:nat.(le (plus p n0) (plus p m))→(le n0 m)
case O : ⇒
the thesis becomes ∀n:nat.∀m:nat.(le (plus O n) (plus O m))→(le n m)
assume n: nat
assume m: nat
we must prove (le (plus O n) (plus O m))→(le n m)
or equivalently (le n m)→(le n m)
suppose H: le n m
consider H
we proved (le n m)→(le n m)
that is equivalent to (le (plus O n) (plus O m))→(le n m)
∀n:nat.∀m:nat.(le (plus O n) (plus O m))→(le n m)
case S : p0:nat ⇒
the thesis becomes ∀n:nat.∀m:nat.(le (plus (S p0) n) (plus (S p0) m))→(le n m)
(IHp) by induction hypothesis we know ∀n:nat.∀m:nat.(le (plus p0 n) (plus p0 m))→(le n m)
assume n: nat
assume m: nat
we must prove (le (plus (S p0) n) (plus (S p0) m))→(le n m)
or equivalently (le (S (plus p0 n)) (S (plus p0 m)))→(le n m)
suppose H: le (S (plus p0 n)) (S (plus p0 m))
by (le_S_n . . H)
we proved le (plus p0 n) (plus p0 m)
by (IHp . . previous)
we proved le n m
we proved (le (S (plus p0 n)) (S (plus p0 m)))→(le n m)
that is equivalent to (le (plus (S p0) n) (plus (S p0) m))→(le n m)
∀n:nat.∀m:nat.(le (plus (S p0) n) (plus (S p0) m))→(le n m)
we proved ∀n0:nat.∀m:nat.(le (plus p n0) (plus p m))→(le n0 m)
we proved ∀p:nat.∀n0:nat.∀m:nat.(le (plus p n0) (plus p m))→(le n0 m)