DEFINITION plus_n_O()
TYPE =
∀n:nat.(eq nat n (plus n O))
BODY =
assume n: nat
we proceed by induction on n to prove eq nat n (plus n O)
case O : ⇒
the thesis becomes eq nat O (plus O O)
by (refl_equal . .)
we proved eq nat O O
eq nat O (plus O O)
case S : n0:nat ⇒
the thesis becomes eq nat (S n0) (plus (S n0) O)
(H) by induction hypothesis we know eq nat n0 (plus n0 O)
by (f_equal . . . . . H)
we proved eq nat (S n0) (S (plus n0 O))
eq nat (S n0) (plus (S n0) O)
we proved eq nat n (plus n O)
we proved ∀n:nat.(eq nat n (plus n O))