DEFINITION plus_assoc_r()
TYPE =
∀n:nat.∀m:nat.∀p:nat.(eq nat (plus (plus n m) p) (plus n (plus m p)))
BODY =
assume n: nat
assume m: nat
assume p: nat
by (plus_assoc_l . . .)
we proved eq nat (plus n (plus m p)) (plus (plus n m) p)
by (sym_eq . . . previous)
we proved eq nat (plus (plus n m) p) (plus n (plus m p))
we proved ∀n:nat.∀m:nat.∀p:nat.(eq nat (plus (plus n m) p) (plus n (plus m p)))