DEFINITION plus_Snm_nSm()
TYPE =
∀n:nat.∀m:nat.(eq nat (plus (S n) m) (plus n (S m)))
BODY =
assume n: nat
assume m: nat
(h1)
(h1)
by (refl_equal . .)
we proved eq nat (plus (S m) n) (plus (S m) n)
eq nat (S (plus m n)) (plus (S m) n)
end of h1
(h2)
by (plus_sym . .)
eq nat (plus n (S m)) (plus (S m) n)
end of h2
by (eq_ind_r . . . h1 . h2)
eq nat (S (plus m n)) (plus n (S m))
end of h1
(h2)
by (plus_sym . .)
eq nat (plus n m) (plus m n)
end of h2
by (eq_ind_r . . . h1 . h2)
we proved eq nat (S (plus n m)) (plus n (S m))
that is equivalent to eq nat (plus (S n) m) (plus n (S m))
we proved ∀n:nat.∀m:nat.(eq nat (plus (S n) m) (plus n (S m)))