DEFINITION not_eq_S()
TYPE =
∀n:nat.∀m:nat.(not (eq nat n m))→(not (eq nat (S n) (S m)))
BODY =
assume n: nat
assume m: nat
suppose H: not (eq nat n m)
we must prove not (eq nat (S n) (S m))
or equivalently (eq nat (S n) (S m))→False
suppose H0: eq nat (S n) (S m)
by (eq_add_S . . H0)
we proved eq nat n m
by (H previous)
we proved False
we proved (eq nat (S n) (S m))→False
that is equivalent to not (eq nat (S n) (S m))
we proved ∀n:nat.∀m:nat.(not (eq nat n m))→(not (eq nat (S n) (S m)))