DEFINITION minus_n_n()
TYPE =
∀n:nat.(eq nat O (minus n n))
BODY =
assume n: nat
we proceed by induction on n to prove eq nat O (minus n n)
case O : ⇒
the thesis becomes eq nat O (minus O O)
by (refl_equal . .)
we proved eq nat O O
eq nat O (minus O O)
case S : n0:nat ⇒
the thesis becomes eq nat O (minus (S n0) (S n0))
(IHn) by induction hypothesis we know eq nat O (minus n0 n0)
consider IHn
we proved eq nat O (minus n0 n0)
eq nat O (minus (S n0) (S n0))
we proved eq nat O (minus n n)
we proved ∀n:nat.(eq nat O (minus n n))