DEFINITION lt_wf_ind()
TYPE =
∀p:nat
.∀P:nat→Prop
.(∀n:nat.(∀m:nat.(lt m n)→(P m))→(P n))→(P p)
BODY =
assume p: nat
assume P: nat→Prop
suppose H: ∀n:nat.(∀m:nat.(lt m n)→(P m))→(P n)
by (lt_wf .)
we proved Acc nat lt p
we proceed by induction on the previous result to prove P p
case Acc_intro : x:nat :∀y:nat.(lt y x)→(Acc nat lt y) ⇒
the thesis becomes P x
(H1) by induction hypothesis we know ∀y:nat.(lt y x)→(P y)
by (H . H1)
P x
we proved P p
we proved
∀p:nat
.∀P:nat→Prop
.(∀n:nat.(∀m:nat.(lt m n)→(P m))→(P n))→(P p)