DEFINITION lt_trans()
TYPE =
∀n:nat.∀m:nat.∀p:nat.(lt n m)→(lt m p)→(lt n p)
BODY =
assume n: nat
assume m: nat
assume p: nat
suppose H: lt n m
suppose H0: lt m p
consider H0
we proved lt m p
that is equivalent to le (S m) p
we proceed by induction on the previous result to prove lt n p
case le_n : ⇒
the thesis becomes lt n (S m)
consider H
we proved lt n m
that is equivalent to le (S n) m
by (le_S . . previous)
we proved le (S n) (S m)
lt n (S m)
case le_S : m0:nat :le (S m) m0 ⇒
the thesis becomes lt n (S m0)
(IHle) by induction hypothesis we know lt n m0
consider IHle
we proved lt n m0
that is equivalent to le (S n) m0
by (le_S . . previous)
we proved le (S n) (S m0)
lt n (S m0)
we proved lt n p
we proved ∀n:nat.∀m:nat.∀p:nat.(lt n m)→(lt m p)→(lt n p)