DEFINITION lt_reg_r()
TYPE =
∀n:nat.∀m:nat.∀p:nat.(lt n m)→(lt (plus n p) (plus m p))
BODY =
assume n: nat
assume m: nat
assume p: nat
suppose H: lt n m
(h1)
(h1)
we proceed by induction on p to prove lt (plus p n) (plus p m)
case O : ⇒
the thesis becomes lt (plus O n) (plus O m)
consider H
we proved lt n m
lt (plus O n) (plus O m)
case S : n0:nat ⇒
the thesis becomes lt (plus (S n0) n) (plus (S n0) m)
() by induction hypothesis we know lt (plus n0 n) (plus n0 m)
by (lt_reg_l . . . H)
lt (plus (S n0) n) (plus (S n0) m)
lt (plus p n) (plus p m)
end of h1
(h2)
by (plus_sym . .)
eq nat (plus m p) (plus p m)
end of h2
by (eq_ind_r . . . h1 . h2)
lt (plus p n) (plus m p)
end of h1
(h2)
by (plus_sym . .)
eq nat (plus n p) (plus p n)
end of h2
by (eq_ind_r . . . h1 . h2)
we proved lt (plus n p) (plus m p)
we proved ∀n:nat.∀m:nat.∀p:nat.(lt n m)→(lt (plus n p) (plus m p))