DEFINITION lt_reg_l()
TYPE =
∀n:nat.∀m:nat.∀p:nat.(lt n m)→(lt (plus p n) (plus p m))
BODY =
assume n: nat
assume m: nat
assume p: nat
we proceed by induction on p to prove (lt n m)→(lt (plus p n) (plus p m))
case O : ⇒
the thesis becomes (lt n m)→(lt (plus O n) (plus O m))
suppose H: lt n m
consider H
we proved lt n m
that is equivalent to lt (plus O n) (plus O m)
(lt n m)→(lt (plus O n) (plus O m))
case S : p0:nat ⇒
the thesis becomes ∀H:(lt n m).(lt (S (plus p0 n)) (S (plus p0 m)))
(IHp) by induction hypothesis we know (lt n m)→(lt (plus p0 n) (plus p0 m))
suppose H: lt n m
by (IHp H)
we proved lt (plus p0 n) (plus p0 m)
by (lt_n_S . . previous)
we proved lt (S (plus p0 n)) (S (plus p0 m))
that is equivalent to lt (plus (S p0) n) (plus (S p0) m)
∀H:(lt n m).(lt (S (plus p0 n)) (S (plus p0 m)))
we proved (lt n m)→(lt (plus p n) (plus p m))
we proved ∀n:nat.∀m:nat.∀p:nat.(lt n m)→(lt (plus p n) (plus p m))