DEFINITION lt_le_plus_plus()
TYPE =
∀n:nat
.∀m:nat
.∀p:nat.∀q:nat.(lt n m)→(le p q)→(lt (plus n p) (plus m q))
BODY =
assume n: nat
assume m: nat
assume p: nat
assume q: nat
we must prove (lt n m)→(le p q)→(lt (plus n p) (plus m q))
or equivalently (le (S n) m)→(le p q)→(lt (plus n p) (plus m q))
suppose H: le (S n) m
suppose H0: le p q
by (le_plus_plus . . . . H H0)
we proved le (plus (S n) p) (plus m q)
that is equivalent to lt (plus n p) (plus m q)
we proved (le (S n) m)→(le p q)→(lt (plus n p) (plus m q))
that is equivalent to (lt n m)→(le p q)→(lt (plus n p) (plus m q))
we proved
∀n:nat
.∀m:nat
.∀p:nat.∀q:nat.(lt n m)→(le p q)→(lt (plus n p) (plus m q))