DEFINITION lt_S_n()
TYPE =
∀n:nat.∀m:nat.(lt (S n) (S m))→(lt n m)
BODY =
assume n: nat
assume m: nat
suppose H: lt (S n) (S m)
consider H
we proved lt (S n) (S m)
that is equivalent to le (S (S n)) (S m)
by (le_S_n . . previous)
we proved le (S n) m
that is equivalent to lt n m
we proved ∀n:nat.∀m:nat.(lt (S n) (S m))→(lt n m)