DEFINITION le_trans()
TYPE =
∀n:nat.∀m:nat.∀p:nat.(le n m)→(le m p)→(le n p)
BODY =
assume n: nat
assume m: nat
assume p: nat
suppose H: le n m
suppose H0: le m p
we proceed by induction on H0 to prove le n p
case le_n : ⇒
the thesis becomes the hypothesis H
case le_S : m0:nat :le m m0 ⇒
the thesis becomes le n (S m0)
(IHle) by induction hypothesis we know le n m0
by (le_S . . IHle)
le n (S m0)
we proved le n p
we proved ∀n:nat.∀m:nat.∀p:nat.(le n m)→(le m p)→(le n p)