DEFINITION le_reg_l()
TYPE =
∀n:nat.∀m:nat.∀p:nat.(le n m)→(le (plus p n) (plus p m))
BODY =
assume n: nat
assume m: nat
assume p: nat
we proceed by induction on p to prove (le n m)→(le (plus p n) (plus p m))
case O : ⇒
the thesis becomes (le n m)→(le (plus O n) (plus O m))
suppose H: le n m
consider H
we proved le n m
that is equivalent to le (plus O n) (plus O m)
(le n m)→(le (plus O n) (plus O m))
case S : p0:nat ⇒
the thesis becomes ∀H:(le n m).(le (S (plus p0 n)) (S (plus p0 m)))
(IHp) by induction hypothesis we know (le n m)→(le (plus p0 n) (plus p0 m))
suppose H: le n m
by (IHp H)
we proved le (plus p0 n) (plus p0 m)
by (le_n_S . . previous)
we proved le (S (plus p0 n)) (S (plus p0 m))
that is equivalent to le (plus (S p0) n) (plus (S p0) m)
∀H:(le n m).(le (S (plus p0 n)) (S (plus p0 m)))
we proved (le n m)→(le (plus p n) (plus p m))
we proved ∀n:nat.∀m:nat.∀p:nat.(le n m)→(le (plus p n) (plus p m))