DEFINITION le_plus_r()
TYPE =
∀n:nat.∀m:nat.(le m (plus n m))
BODY =
assume n: nat
assume m: nat
we proceed by induction on n to prove le m (plus n m)
case O : ⇒
the thesis becomes le m (plus O m)
by (le_n .)
we proved le m m
le m (plus O m)
case S : n0:nat ⇒
the thesis becomes le m (plus (S n0) m)
(H) by induction hypothesis we know le m (plus n0 m)
by (le_S . . H)
we proved le m (S (plus n0 m))
le m (plus (S n0) m)
we proved le m (plus n m)
we proved ∀n:nat.∀m:nat.(le m (plus n m))