DEFINITION le_plus_plus()
TYPE =
∀n:nat
.∀m:nat
.∀p:nat.∀q:nat.(le n m)→(le p q)→(le (plus n p) (plus m q))
BODY =
assume n: nat
assume m: nat
assume p: nat
assume q: nat
suppose H: le n m
suppose H0: le p q
we proceed by induction on H to prove le (plus n p) (plus m q)
case le_n : ⇒
the thesis becomes le (plus n p) (plus n q)
by (le_reg_l . . . H0)
le (plus n p) (plus n q)
case le_S : m0:nat :le n m0 ⇒
the thesis becomes le (plus n p) (plus (S m0) q)
(H2) by induction hypothesis we know le (plus n p) (plus m0 q)
by (le_S . . H2)
we proved le (plus n p) (S (plus m0 q))
le (plus n p) (plus (S m0) q)
we proved le (plus n p) (plus m q)
we proved
∀n:nat
.∀m:nat
.∀p:nat.∀q:nat.(le n m)→(le p q)→(le (plus n p) (plus m q))