DEFINITION le_plus_minus()
TYPE =
∀n:nat.∀m:nat.(le n m)→(eq nat m (plus n (minus m n)))
BODY =
assume n: nat
assume m: nat
suppose Le: le n m
(h1)
assume p: nat
by (minus_n_O .)
we proved eq nat p (minus p O)
that is equivalent to eq nat p (plus O (minus p O))
∀p:nat.(eq nat p (plus O (minus p O)))
end of h1
(h2)
assume p: nat
assume q: nat
suppose : le p q
suppose H0: eq nat q (plus p (minus q p))
by (f_equal . . . . . H0)
we proved eq nat (S q) (S (plus p (minus q p)))
that is equivalent to eq nat (S q) (plus (S p) (minus (S q) (S p)))
∀p:nat
.∀q:nat
.le p q
→(eq nat q (plus p (minus q p))
→eq nat (S q) (plus (S p) (minus (S q) (S p))))
end of h2
by (le_elim_rel . h1 h2 . . Le)
we proved eq nat m (plus n (minus m n))
we proved ∀n:nat.∀m:nat.(le n m)→(eq nat m (plus n (minus m n)))