DEFINITION le_plus_l()
TYPE =
∀n:nat.∀m:nat.(le n (plus n m))
BODY =
assume n: nat
we proceed by induction on n to prove ∀m:nat.(le n (plus n m))
case O : ⇒
the thesis becomes ∀m:nat.(le O (plus O m))
assume m: nat
by (le_O_n .)
we proved le O m
that is equivalent to le O (plus O m)
∀m:nat.(le O (plus O m))
case S : n0:nat ⇒
the thesis becomes ∀m:nat.(le (S n0) (S (plus n0 m)))
(IHn) by induction hypothesis we know ∀m:nat.(le n0 (plus n0 m))
assume m: nat
by (IHn .)
we proved le n0 (plus n0 m)
by (le_n_S . . previous)
we proved le (S n0) (S (plus n0 m))
that is equivalent to le (S n0) (plus (S n0) m)
∀m:nat.(le (S n0) (S (plus n0 m)))
we proved ∀m:nat.(le n (plus n m))
we proved ∀n:nat.∀m:nat.(le n (plus n m))