DEFINITION le_n_S()
TYPE =
∀n:nat.∀m:nat.(le n m)→(le (S n) (S m))
BODY =
assume n: nat
assume m: nat
suppose H: le n m
we proceed by induction on H to prove le (S n) (S m)
case le_n : ⇒
the thesis becomes le (S n) (S n)
by (le_n .)
le (S n) (S n)
case le_S : m0:nat :le n m0 ⇒
the thesis becomes le (S n) (S (S m0))
(IHle) by induction hypothesis we know le (S n) (S m0)
by (le_S . . IHle)
le (S n) (S (S m0))
we proved le (S n) (S m)
we proved ∀n:nat.∀m:nat.(le n m)→(le (S n) (S m))