DEFINITION le_lt_plus_plus()
TYPE =
∀n:nat
.∀m:nat
.∀p:nat.∀q:nat.(le n m)→(lt p q)→(lt (plus n p) (plus m q))
BODY =
assume n: nat
assume m: nat
assume p: nat
assume q: nat
suppose H: le n m
we must prove (lt p q)→(lt (plus n p) (plus m q))
or equivalently (le (S p) q)→(lt (plus n p) (plus m q))
suppose H0: le (S p) q
(h1)
by (le_plus_plus . . . . H H0)
le (plus n (S p)) (plus m q)
end of h1
(h2)
by (plus_Snm_nSm . .)
eq nat (plus (S n) p) (plus n (S p))
end of h2
by (eq_ind_r . . . h1 . h2)
we proved le (plus (S n) p) (plus m q)
that is equivalent to lt (plus n p) (plus m q)
we proved (le (S p) q)→(lt (plus n p) (plus m q))
that is equivalent to (lt p q)→(lt (plus n p) (plus m q))
we proved
∀n:nat
.∀m:nat
.∀p:nat.∀q:nat.(le n m)→(lt p q)→(lt (plus n p) (plus m q))