DEFINITION le_Sn_n()
TYPE =
∀n:nat.(not (le (S n) n))
BODY =
assume n: nat
we proceed by induction on n to prove not (le (S n) n)
case O : ⇒
the thesis becomes not (le (S O) O)
by (le_Sn_O .)
not (le (S O) O)
case S : n0:nat ⇒
the thesis becomes not (le (S (S n0)) (S n0))
(IHn) by induction hypothesis we know not (le (S n0) n0)
we must prove not (le (S (S n0)) (S n0))
or equivalently (le (S (S n0)) (S n0))→False
suppose H: le (S (S n0)) (S n0)
by (le_S_n . . H)
we proved le (S n0) n0
by (IHn previous)
we proved False
we proved (le (S (S n0)) (S n0))→False
not (le (S (S n0)) (S n0))
we proved not (le (S n) n)
we proved ∀n:nat.(not (le (S n) n))