DEFINITION le_Sn_O()
TYPE =
∀n:nat.(not (le (S n) O))
BODY =
assume n: nat
we must prove not (le (S n) O)
or equivalently (le (S n) O)→False
suppose H: le (S n) O
we proceed by induction on H to prove IsSucc O
case le_n : ⇒
the thesis becomes IsSucc (S n)
consider I
we proved True
IsSucc (S n)
case le_S : m:nat :le (S n) m ⇒
the thesis becomes IsSucc (S m)
() by induction hypothesis we know IsSucc m
consider I
we proved True
IsSucc (S m)
we proved IsSucc O
that is equivalent to False
we proved (le (S n) O)→False
that is equivalent to not (le (S n) O)
we proved ∀n:nat.(not (le (S n) O))