DEFINITION le_S_n()
TYPE =
∀n:nat.∀m:nat.(le (S n) (S m))→(le n m)
BODY =
assume n: nat
assume m: nat
suppose H: le (S n) (S m)
we proceed by induction on H to prove le (pred (S n)) (pred (S m))
case le_n : ⇒
the thesis becomes le (pred (S n)) (pred (S n))
by (le_n .)
we proved le n n
le (pred (S n)) (pred (S n))
case le_S : m0:nat H0:le (S n) m0 ⇒
the thesis becomes le (pred (S n)) (pred (S m0))
() by induction hypothesis we know le n (pred m0)
by (le_trans_S . . H0)
we proved le n m0
le (pred (S n)) (pred (S m0))
we proved le (pred (S n)) (pred (S m))
that is equivalent to le n m
we proved ∀n:nat.∀m:nat.(le (S n) (S m))→(le n m)