DEFINITION f_equal2()
TYPE =
∀A1:Set
.∀A2:Set.∀B:Set.∀f:A1→A2→B.∀x1:A1.∀y1:A1.∀x2:A2.∀y2:A2.(eq A1 x1 y1)→(eq A2 x2 y2)→(eq B (f x1 x2) (f y1 y2))
BODY =
assume A1: Set
assume A2: Set
assume B: Set
assume f: A1→A2→B
assume x1: A1
assume y1: A1
assume x2: A2
assume y2: A2
suppose H: eq A1 x1 y1
we proceed by induction on H to prove (eq A2 x2 y2)→(eq B (f x1 x2) (f y1 y2))
case refl_equal : ⇒
the thesis becomes (eq A2 x2 y2)→(eq B (f x1 x2) (f x1 y2))
suppose H0: eq A2 x2 y2
we proceed by induction on H0 to prove eq B (f x1 x2) (f x1 y2)
case refl_equal : ⇒
the thesis becomes eq B (f x1 x2) (f x1 x2)
by (refl_equal . .)
eq B (f x1 x2) (f x1 x2)
we proved eq B (f x1 x2) (f x1 y2)
(eq A2 x2 y2)→(eq B (f x1 x2) (f x1 y2))
we proved (eq A2 x2 y2)→(eq B (f x1 x2) (f y1 y2))
we proved
∀A1:Set
.∀A2:Set.∀B:Set.∀f:A1→A2→B.∀x1:A1.∀y1:A1.∀x2:A2.∀y2:A2.(eq A1 x1 y1)→(eq A2 x2 y2)→(eq B (f x1 x2) (f y1 y2))