DEFINITION f_equal()
TYPE =
∀A:Set.∀B:Set.∀f:A→B.∀x:A.∀y:A.(eq A x y)→(eq B (f x) (f y))
BODY =
assume A: Set
assume B: Set
assume f: A→B
assume x: A
assume y: A
suppose H: eq A x y
we proceed by induction on H to prove eq B (f x) (f y)
case refl_equal : ⇒
the thesis becomes eq B (f x) (f x)
by (refl_equal . .)
eq B (f x) (f x)
we proved eq B (f x) (f y)
we proved ∀A:Set.∀B:Set.∀f:A→B.∀x:A.∀y:A.(eq A x y)→(eq B (f x) (f y))