DEFINITION eq_ind_r()
TYPE =
∀A:Set.∀x:A.∀P:A→Prop.(P x)→∀y:A.(eq A y x)→(P y)
BODY =
assume A: Set
assume x: A
assume P: A→Prop
suppose H: P x
assume y: A
suppose H0: eq A y x
by (sym_eq . . . H0)
we proved eq A x y
by cases on the previous result we prove P y
case refl_equal ⇒
the thesis becomes the hypothesis H
we proved P y
we proved ∀A:Set.∀x:A.∀P:A→Prop.(P x)→∀y:A.(eq A y x)→(P y)