DEFINITION eq_add_S()
TYPE =
∀n:nat.∀m:nat.(eq nat (S n) (S m))→(eq nat n m)
BODY =
assume n: nat
assume m: nat
suppose H: eq nat (S n) (S m)
by (f_equal . . . . . H)
we proved eq nat (pred (S n)) (pred (S m))
that is equivalent to eq nat n m
we proved ∀n:nat.∀m:nat.(eq nat (S n) (S m))→(eq nat n m)