DEFINITION S_pred()
TYPE =
∀n:nat.∀m:nat.(lt m n)→(eq nat n (S (pred n)))
BODY =
assume n: nat
assume m: nat
suppose H: lt m n
consider H
we proved lt m n
that is equivalent to le (S m) n
we proceed by induction on the previous result to prove eq nat n (S (pred n))
case le_n : ⇒
the thesis becomes eq nat (S m) (S (pred (S m)))
by (refl_equal . .)
we proved eq nat (S (pred (S m))) (S (pred (S m)))
eq nat (S m) (S (pred (S m)))
case le_S : m0:nat :le (S m) m0 ⇒
the thesis becomes eq nat (S m0) (S (pred (S m0)))
() by induction hypothesis we know eq nat m0 (S (pred m0))
by (refl_equal . .)
we proved eq nat (S (pred (S m0))) (S (pred (S m0)))
eq nat (S m0) (S (pred (S m0)))
we proved eq nat n (S (pred n))
we proved ∀n:nat.∀m:nat.(lt m n)→(eq nat n (S (pred n)))