DEFINITION nat_ind()
TYPE =
       P:natProp
         .(P O)(n:nat.(P n)(P (S n)))n:nat.(P n)
BODY =
        assume PnatProp
        suppose HO
        suppose H1n:nat.(P n)(P (S n))
          (aux) by well-founded reasoning we prove n:nat.(P n)
          assume nnat
             by cases on n we prove P n
                case 
                   the thesis becomes the hypothesis H
                case S n1:nat 
                   the thesis becomes P (S n1)
                   by (aux .)
                   we proved P n1
                   by (H1 . previous)
P (S n1)
             we proved P n
n:nat.(P n)
          done
          consider aux
          we proved n:nat.(P n)
       we proved 
          P:natProp
            .(P O)(n:nat.(P n)(P (S n)))n:nat.(P n)