DEFINITION le_ind()
TYPE =
∀n:nat
.∀P:nat→Prop
.P n
→(∀n1:nat.(le n n1)→(P n1)→(P (S n1)))→∀n1:nat.(le n n1)→(P n1)
BODY =
assume n: nat
assume P: nat→Prop
suppose H: P n
suppose H1: ∀n1:nat.(le n n1)→(P n1)→(P (S n1))
(aux) by well-founded reasoning we prove ∀n1:nat.(le n n1)→(P n1)
assume n1: nat
suppose H2: le n n1
by cases on H2 we prove P n1
case le_n ⇒
the thesis becomes the hypothesis H
case le_S n2:nat H3:le n n2 ⇒
the thesis becomes P (S n2)
by (aux . H3)
we proved P n2
by (H1 . H3 previous)
P (S n2)
we proved P n1
∀n1:nat.(le n n1)→(P n1)
done
consider aux
we proved ∀n1:nat.(le n n1)→(P n1)
we proved
∀n:nat
.∀P:nat→Prop
.P n
→(∀n1:nat.(le n n1)→(P n1)→(P (S n1)))→∀n1:nat.(le n n1)→(P n1)