DEFINITION PList_ind()
TYPE =
       P:PListProp
         .P PNil
           (n:nat.n1:nat.p:PList.(P p)(P (PCons n n1 p)))p:PList.(P p)
BODY =
        assume PPListProp
        suppose HPNil
        suppose H1n:nat.n1:nat.p:PList.(P p)(P (PCons n n1 p))
          (aux) by well-founded reasoning we prove p:PList.(P p)
          assume pPList
             by cases on p we prove P p
                case PNil 
                   the thesis becomes the hypothesis H
                case PCons n:nat n1:nat p1:PList 
                   the thesis becomes P (PCons n n1 p1)
                   by (aux .)
                   we proved P p1
                   by (H1 . . . previous)
P (PCons n n1 p1)
             we proved P p
p:PList.(P p)
          done
          consider aux
          we proved p:PList.(P p)
       we proved 
          P:PListProp
            .P PNil
              (n:nat.n1:nat.p:PList.(P p)(P (PCons n n1 p)))p:PList.(P p)