DEFINITION insert_eq()
TYPE =
∀S:Set
.∀x:S
.∀P:S→Prop
.∀G:S→Prop
.(∀y:S.(P y)→(eq S y x)→(G y))→(P x)→(G x)
BODY =
assume S: Set
assume x: S
assume P: S→Prop
assume G: S→Prop
suppose H: ∀y:S.(P y)→(eq S y x)→(G y)
suppose H0: P x
by (refl_equal . .)
we proved eq S x x
by (H . H0 previous)
we proved G x
we proved
∀S:Set
.∀x:S
.∀P:S→Prop
.∀G:S→Prop
.(∀y:S.(P y)→(eq S y x)→(G y))→(P x)→(G x)