DEFINITION simpl_plus_r()
TYPE =
∀n:nat.∀m:nat.∀p:nat.(eq nat (plus m n) (plus p n))→(eq nat m p)
BODY =
assume n: nat
assume m: nat
assume p: nat
suppose H: eq nat (plus m n) (plus p n)
(h1)
by (plus_sym . .)
we proved eq nat (plus n p) (plus p n)
by (sym_eq . . . previous)
we proved eq nat (plus p n) (plus n p)
by (eq_ind_r . . . previous . H)
eq nat (plus m n) (plus n p)
end of h1
(h2)
by (plus_sym . .)
eq nat (plus n m) (plus m n)
end of h2
by (eq_ind_r . . . h1 . h2)
we proved eq nat (plus n m) (plus n p)
by (simpl_plus_l . . . previous)
we proved eq nat m p
we proved ∀n:nat.∀m:nat.∀p:nat.(eq nat (plus m n) (plus p n))→(eq nat m p)