DEFINITION simpl_lt_plus_r()
TYPE =
∀p:nat.∀n:nat.∀m:nat.(lt (plus n p) (plus m p))→(lt n m)
BODY =
assume p: nat
assume n: nat
assume m: nat
suppose H: lt (plus n p) (plus m p)
(H0)
by (plus_sym . .)
we proved eq nat (plus n p) (plus p n)
we proceed by induction on the previous result to prove lt (plus p n) (plus m p)
case refl_equal : ⇒
the thesis becomes the hypothesis H
lt (plus p n) (plus m p)
end of H0
(H1)
by (plus_sym . .)
we proved eq nat (plus m p) (plus p m)
we proceed by induction on the previous result to prove lt (plus p n) (plus p m)
case refl_equal : ⇒
the thesis becomes the hypothesis H0
lt (plus p n) (plus p m)
end of H1
consider H1
we proved lt (plus p n) (plus p m)
by (simpl_lt_plus_l . . . previous)
we proved lt n m
we proved ∀p:nat.∀n:nat.∀m:nat.(lt (plus n p) (plus m p))→(lt n m)