DEFINITION plus_permute_2_in_3_assoc()
TYPE =
∀n:nat.∀h:nat.∀k:nat.(eq nat (plus (plus n h) k) (plus n (plus k h)))
BODY =
assume n: nat
assume h: nat
assume k: nat
(h1)
(h1)
by (refl_equal . .)
eq nat (plus (plus n k) h) (plus (plus n k) h)
end of h1
(h2)
by (plus_assoc_l . . .)
eq nat (plus n (plus k h)) (plus (plus n k) h)
end of h2
by (eq_ind_r . . . h1 . h2)
eq nat (plus (plus n k) h) (plus n (plus k h))
end of h1
(h2)
by (plus_permute_2_in_3 . . .)
eq nat (plus (plus n h) k) (plus (plus n k) h)
end of h2
by (eq_ind_r . . . h1 . h2)
we proved eq nat (plus (plus n h) k) (plus n (plus k h))
we proved ∀n:nat.∀h:nat.∀k:nat.(eq nat (plus (plus n h) k) (plus n (plus k h)))