DEFINITION neq_eq_e()
TYPE =
∀i:nat
.∀j:nat
.∀P:Prop.((not (eq nat i j))→P)→((eq nat i j)→P)→P
BODY =
assume i: nat
assume j: nat
assume P: Prop
suppose H: (not (eq nat i j))→P
suppose H0: (eq nat i j)→P
(o)
by (eq_nat_dec . .)
or (not (eq nat i j)) (eq nat i j)
end of o
we proceed by induction on o to prove P
case or_introl ⇒
the thesis becomes the hypothesis H
case or_intror ⇒
the thesis becomes the hypothesis H0
we proved P
we proved
∀i:nat
.∀j:nat
.∀P:Prop.((not (eq nat i j))→P)→((eq nat i j)→P)→P